Experimental study of phase entrainment in copper solvent extraction

espanolSe estudio el atrapamiento de fase organica en acuoso aplicado a soluciones tipicas de un proceso de extraccion por solventes de cobre. La fase organica empleada esta compuesta por el extractante comercial LIX 984-N diluido en Shellsol 2046 AR. La fase acuosa contiene 6 g/L de Cu2+, pH 2 a 20 oC. Las variables estudiadas fueron: velocidad de mezclamiento de 400 a 1000 rpm, tiempo de mezclado de 3 a 30 minutos, pH inicial del electrolito de 2, 3 y 4, porcentaje de extractante en fase organica de 10 a 30% v/v y concentracion de cobre en fase acuosa de 1 a 6 g/L. Se determino que el atrapamiento de fase organica en acuoso esta determinado por las propiedades fisicas de las fases en equilibrio y por la hidrodinamica del sistema, siendo un fenomeno que involucra a la velocidad de avance de la interfase (o banda de dispersion) y la velocidad de desplazamiento de las gotas de organico EnglishThe entrainment of the organic phase in the aqueous applied to typical solutions in a solvent extraction of copper process was studied. The organic phase used is composed of the commercial extractant LIX 984-N diluted in Shellsol 2046 AR. The aqueous phase contains 6 g/L of Cu2+, at pH 2 and 20 oC. The variables studied were: mixing speed of 400 to 1000 rpm; mixing time of 3 to 30 minutes; initial pH of the electrolyte 2, 3, and 4; percentage of extractant in the organic phase 10 to 30% v/v; and copper concentration in the aqueous phase 1 to 6 g/L. It was determined that the entrainment of the organic phase in the aqueous is determined by the physical properties of the phases in equilibrium and by the system’s hydrodynamics, and it is a phenomenon that involves the advancing speed of the interphase (or dispersion band) and the displacement speed of the organic drops

[1]  Fang Hu,et al.  Phase separation in solvent extraction of cobalt from acidic sulfate solution using synergistic mixture containing dinonylnaphthalene sulfonic acid and 2-ethylhexyl 4-pyridinecarboxylate ester , 2019, Transactions of Nonferrous Metals Society of China.

[2]  A. B. Mageste,et al.  Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems , 2017 .

[3]  O. Benavente,et al.  Estimación y modelización de arrastres de orgánico en acuoso (O/A) en pruebas de laboratorio de planta de extracción por solventes (SX) de cobre , 2013 .

[4]  Hongbin Cao,et al.  Stability of the interfacial crud produced during the extraction of vanadium and chromium , 2013 .

[5]  J. Castillo-Segura,et al.  Estudio de separación de fases en sistemas líquido-líquido usando LIX 984N en fase orgánica , 2012 .

[6]  C. Tapia,et al.  Uptake of copper (II) ions from acidic aqueous solutions using a continuous column packed with microcapsules containing a β-hydroxyoximic compound , 2011 .

[7]  K. R. Barnard,et al.  The effect of temperature on hydroxyoxime stability in the LIX 63 – Versatic 10 – tributyl phosphate synergistic solvent extraction system under synthetic nickel laterite conditions , 2011 .

[8]  Jason M. Morgan,et al.  Entrainment Reduction at Freeport-McMoRan Copper & Gold Morenci Operations , 2011 .

[9]  A. N. Zagorodnyaya,et al.  The characterisation and origins of interphase substances (cruds) in the rhenium solvent extraction circuit of a copper smelter , 2010 .

[10]  M. Safarzadeh,et al.  The effect of impurities on the extraction of copper from sulfate medium using LIX®984N in kerosene , 2009 .

[11]  K. C. Sole,et al.  Removal of entrained organic phase from zinc electrolyte: Pilot plant comparison of CoMatrix and carbon filtration , 2007 .

[12]  Yue-hua Hu,et al.  Degradation of Lix984N and its effect on interfacial emulsion , 2006 .

[13]  S. Donegan,et al.  Direct solvent extraction of nickel at Bulong operations , 2006 .

[14]  M. Dopson,et al.  Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching , 2006 .

[15]  Panagiota Angeli,et al.  Droplet size and velocity profiles in liquid–liquid horizontal flows , 2004 .

[16]  D. Burkhardt Understanding wash efficiency and chloride transfer in copper solvent extraction , 2003 .

[17]  G. Miller,et al.  Experience in operating the girilambone copper SX-EW plant in changing chemical environments , 1997 .

[18]  J. Szymanowski Hydroxyoximes and Copper Hydrometallurgy , 1993 .

[19]  J. L. Watson,et al.  Solvent extraction reagent entrainment effects on zinc electrowinning from waste oxide leach solutions , 1992 .

[20]  Stanley Hartland,et al.  Gravity settling in liquid/liquid dispersions , 1985 .

[21]  G. Bacon,et al.  Solvent extraction as an enabling technology in the nickel industry , 2002 .