Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes

Abstract The state-of-the-art of membrane technology is characterized by a number of mature applications such as sterile filtration, hemodialysis, water purification and gas separation, as well as many more niche applications of successful membrane-based separation and processing of fluid mixtures. The membrane industry is currently employing a portfolio of established materials, mostly standard polymers or inorganic materials (not originally developed for membranes), and easily scalable manufacturing processes such as phase inversion, interfacial polymerization and coating. Innovations in membranes and their manufacturing processes must meet the desired intrinsic properties that determine selectivity and flux, for specific applications. However, tunable and stable performance, as well as sustainability over the entire life cycle of membrane products are becoming increasingly important. Membrane manufacturers are progressively required to share the carbon footprint of their membrane modules with their customers. Environmental awareness among the world's population is a growing phenomenon and finds its reflection in product development and manufacturing processes. In membrane technology one can see initial steps in this direction with the replacement of hazardous solvents, the utilization of renewable materials for membrane production and the reuse of membrane modules. Other examples include increasing the stability of organic membrane polymers and lowering the cost of inorganic membranes. In a long-term perspective, many more developments in materials science will be required for making new, advanced membranes. These include “tools” such as self-assembly or micro- and nano-fabrication, and “building blocks”, e.g. tailored block copolymers or 1D, 2D and 3D materials. Such membranes must be fabricated in a simpler manner and be more versatile than existing ones. In this perspective paper, a vision of such LEGO®-like membranes with precisely adjustable properties will be illustrated with, where possible, examples that already demonstrate feasibility. These include the possibility to switch properties using an external stimulus, adapting a membrane's selectivity to a given separation, or providing the ability to assemble, disassemble and reassemble the membrane on a suitable support as scaffold, in situ, in place and on-demand. Overall, it is foreseen that the scope of future membrane applications will become much wider, based on improved existing membrane materials and manufacturing processes, as well as the combination of novel, tailor-made “building blocks” and “tools” for the fabrication of next-generation membranes tuned to specific applications.

[1]  Yong Liu,et al.  3D printing of smart materials: A review on recent progresses in 4D printing , 2015 .

[2]  Jingjing Xu,et al.  Surface-Tethered Zwitterionic Ultrathin Antifouling Coatings on Reverse Osmosis Membranes by Initiated Chemical Vapor Deposition , 2011 .

[3]  Jens Meyer,et al.  Fabrication of nanoporous graphene/polymer composite membranes. , 2017, Nanoscale.

[4]  X. Qian,et al.  Inverse colloidal crystal microfiltration membranes , 2010 .

[5]  S. Nunes Block Copolymer Membranes for Aqueous Solution Applications , 2016 .

[6]  P. Z. Çulfaz-Emecen,et al.  Cellulose membranes for organic solvent nanofiltration , 2018 .

[7]  Matthias Wessling,et al.  Monolayer microgel composite membranes with tunable permeability , 2018, Journal of Membrane Science.

[8]  W. Phillip,et al.  Robust nanoporous membranes templated by a doubly reactive block copolymer. , 2007, Journal of the American Chemical Society.

[9]  S. Nunes,et al.  Cellulose hollow fibers for organic resistant nanofiltration , 2019, Journal of Membrane Science.

[10]  M. Ulbricht,et al.  Poly(ethylene oxide)-block-poly(methyl methacrylate) diblock copolymers as functional additive for poly(vinylidene fluoride) ultrafiltration membranes with tailored separation performance , 2018 .

[11]  Huanting Wang,et al.  2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation , 2019, Angewandte Chemie.

[12]  S. Mondal,et al.  Forefronts in structure–performance models of separation membranes , 2019, Journal of Membrane Science.

[13]  H. Matsuyama,et al.  Three-dimensional phase-field simulations of membrane porous structure formation by thermally induced phase separation in polymer solutions , 2015 .

[14]  S. Nunes,et al.  Poly(ether imide sulfone) Membranes from Solutions in Ionic Liquids , 2017 .

[15]  Alexander W. Dowling,et al.  Data science-enabled molecular-to-systems engineering for sustainable water treatment , 2019 .

[16]  V. Calo,et al.  3D morphology design for forward osmosis , 2016 .

[17]  Chee Kai Chua,et al.  The potential to enhance membrane module design with 3D printing technology , 2016 .

[18]  Jun Ma,et al.  Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials , 2018 .

[19]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[20]  A. Figoli,et al.  Polyethersulfone membranes prepared with Rhodiasolv®Polarclean as water soluble green solvent , 2018 .

[21]  Ryan P. Lively,et al.  Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. , 2014, ChemSusChem.

[22]  S. Nunes,et al.  Recycled Poly(ethylene terephthalate) for High Temperature Solvent Resistant Membranes , 2019, ACS Applied Polymer Materials.

[23]  Marc Baaden,et al.  Highlights from the Faraday Discussion on Artificial Water Channels, Glasgow, UK. , 2019, Chemical communications.

[24]  W. Stark,et al.  Porous Polymer Membranes by Hard Templating – A Review , 2018 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Pierre Le-Clech,et al.  Production and characterisation of UF membranes by chemical conversion of used RO membranes , 2013 .

[27]  W. Phillip,et al.  A Method for the Efficient Fabrication of Multifunctional Mosaic Membranes by Inkjet Printing. , 2016, ACS applied materials & interfaces.

[28]  M. M. Abolhasani,et al.  Electrospinning production of nanofibrous membranes , 2018, Environmental Chemistry Letters.

[29]  C. Randall,et al.  Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics , 2017 .

[30]  Dhanushkodi D. Mariappan,et al.  A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting. , 2018, ACS applied materials & interfaces.

[31]  Caihong Liu,et al.  Tuning the permselectivity of polymeric desalination membranes via control of polymer crystallite size , 2019, Nature Communications.

[32]  Wanqin Jin,et al.  Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes. , 2016, Angewandte Chemie.

[33]  N. Le,et al.  The effects of a co-solvent on fabrication of cellulose acetate membranes from solutions in 1-ethyl-3-methylimidazolium acetate , 2016 .

[34]  Wei Jiang,et al.  A novel Nb2O5-doped SrCo0.8Fe0.2O3−δ oxide with high permeability and stability for oxygen separation , 2012 .

[35]  T. Merkel,et al.  50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities , 2017 .

[36]  Tiefan Huang,et al.  Cyclodextrin Films with Fast Solvent Transport and Shape‐Selective Permeability , 2017, Advanced materials.

[37]  K. Miyatake Polymer Electrolyte Membranes: Design for Fuel Cells in Acidic Media , 2018, Nanocarbons for Energy Conversion: Supramolecular Approaches.

[38]  Zhongyi Jiang,et al.  Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride , 2013 .

[39]  Mengchen Zhang,et al.  Controllable ion transport by surface-charged graphene oxide membrane , 2019, Nature Communications.

[40]  Liang Ge,et al.  Ion exchange membranes: New developments and applications , 2017 .

[41]  M. Ulbricht,et al.  Magnetoresponsive Poly(ether sulfone)-Based Iron Oxide cum Hydrogel Mixed Matrix Composite Membranes for Switchable Molecular Sieving. , 2016, ACS applied materials & interfaces.

[42]  A. Livingston,et al.  Tunable-Porosity Membranes From Discrete Nanoparticles , 2015, Scientific Reports.

[43]  Praveen Agarwal,et al.  Thin film composite membranes from polymers of intrinsic microporosity using layer-by-layer method , 2019, Journal of Membrane Science.

[44]  Yong Zhao,et al.  Nanofiber multilayer membranes with tailored nanochannels prepared by molecular layer-by-layer assembly for high throughput separation , 2017 .

[45]  H. Maghsoudi Defects of Zeolite Membranes: Characterization, Modification and Post-treatment Techniques , 2016 .

[46]  Stefan Chisca,et al.  Artificial 3D hierarchical and isotropic porous polymeric materials , 2018, Science Advances.

[47]  K. Nijmeijer,et al.  Charged micropollutant removal with hollow fiber nanofiltration membranes based on polycation/polyzwitterion/polyanion multilayers. , 2014, ACS applied materials & interfaces.

[48]  S. Nunes,et al.  Solvent and thermal resistant ultrafiltration membranes from alkyne-functionalized high-performance polymers , 2018, Journal of Membrane Science.

[49]  S. Nunes,et al.  Oil–Water Separation using Membranes Manufactured from Cellulose/Ionic Liquid Solutions , 2018, ACS Sustainable Chemistry & Engineering.

[50]  B. Freeman,et al.  Surface Modification of Water Purification Membranes. , 2017, Angewandte Chemie.

[51]  Gongpin Liu,et al.  2D MXene Nanofilms with Tunable Gas Transport Channels , 2018, Advanced Functional Materials.

[52]  Ayse Asatekin,et al.  Selective Transport through Membranes with Charged Nanochannels Formed by Scalable Self-Assembly of Random Copolymer Micelles. , 2017, ACS nano.

[53]  A. Greenberg,et al.  Surface-patterning of polymeric membranes: fabrication and performance , 2018, Current Opinion in Chemical Engineering.

[54]  Ze Xian Low,et al.  Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques , 2017 .

[55]  Seda Keskin,et al.  High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations , 2018, ACS applied materials & interfaces.

[56]  A. Livingston,et al.  Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving , 2018, Nature Chemistry.

[57]  Brett A. Helms,et al.  Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies , 2018, Advanced materials.

[58]  John D. Hayler,et al.  Updating and further expanding GSK's solvent sustainability guide , 2016 .

[59]  Andrew Andrew,et al.  Membranes from academia to industry. , 2017, Nature materials.

[60]  S. Nunes,et al.  Membrane manufacture for peptide separation , 2016 .

[61]  R. Ruiz,et al.  Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly , 2008, Science.

[62]  R. Hoogenboom,et al.  Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation , 2014 .

[63]  Pierre Le-Clech,et al.  Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes , 2012 .

[64]  A. Noor,et al.  Integration and fabrication of the cheap ceramic membrane through 3D printing technology , 2018 .

[65]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[66]  S. Nunes,et al.  High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres , 2019, Journal of Membrane Science.

[68]  Tai‐Shung Chung,et al.  Effects of Different Ionic Liquids as Green Solvents on the Formation and Ultrafiltration Performance of CA Hollow Fiber Membranes , 2016 .

[69]  Li Cao,et al.  Metal-coordinated sub-10 nm membranes for water purification , 2019, Nature Communications.

[70]  Y. Fujii,et al.  Ultrathin free-standing membranes from metal hydroxide nanostrands , 2013 .

[71]  Xiao Hu,et al.  Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization , 2012 .

[72]  S. Albeck,et al.  Separation, Immobilization, and Biocatalytic Utilization of Proteins by a Supramolecular Membrane , 2013, PloS one.

[73]  Benny D. Freeman,et al.  Water permeability and water/salt selectivity tradeoff in polymers for desalination , 2008 .

[74]  Dong Won Shin,et al.  Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives , 2015 .

[75]  Gongpin Liu,et al.  Graphene‐Based Membranes , 2015 .

[76]  Izumi Ichinose,et al.  Ultrafast permeation of water through protein-based membranes. , 2009, Nature nanotechnology.

[77]  Andrew G. Livingston,et al.  Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation , 2015, Science.

[78]  Huamin Zhang,et al.  Porous membranes in secondary battery technologies. , 2017, Chemical Society Reviews.

[79]  U. Schwingenschlögl,et al.  Highways for water molecules: Interplay between nanostructure and water vapor transport in block copolymer membranes , 2019, Journal of Membrane Science.

[80]  Kang Li,et al.  Nanopapers for organic solvent nanofiltration. , 2014, Chemical communications.

[81]  S. Nunes,et al.  Crosslinked polytriazole membranes for organophilic filtration , 2017 .

[82]  Shaofan Li,et al.  Understanding the Aqueous Stability and Filtration Capability of MoS2 Membranes. , 2017, Nano letters.

[83]  Gyorgy Szekely,et al.  Molecular separation with organic solvent nanofiltration: a critical review. , 2014, Chemical reviews.

[84]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[85]  A. Livingston,et al.  Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes , 2015 .

[86]  John Pellegrino,et al.  Roll‐to‐roll nanoimprint lithography of ultrafiltration membrane , 2018 .

[87]  Gongpin Liu,et al.  Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity , 2017 .

[88]  S. Chan,et al.  The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration , 2014 .

[89]  M. Amaral,et al.  Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation. , 2017, Water science and technology : a journal of the International Association on Water Pollution Research.

[90]  Matthias Wessling,et al.  Print your membrane: Rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist , 2015 .

[91]  Yaning He,et al.  Dissipative particle dynamics simulation on the membrane formation of polymer-diluent system via thermally induced phase separation , 2011 .

[92]  Luda Wang,et al.  Selective molecular sieving through porous graphene. , 2012, Nature nanotechnology.

[93]  Klaus-Viktor Peinemann,et al.  Ultraporous Films with Uniform Nanochannels by Block Copolymer Micelles Assembly , 2010 .

[94]  B. Hsiao,et al.  Fabrication of cellulose nanofiber‐based ultrafiltration membranes by spray coating approach , 2017 .

[95]  Matthias Wessling,et al.  3D-printed rotating spinnerets create membranes with a twist , 2018, Journal of Membrane Science.

[96]  M. Guiver,et al.  Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes , 2018, Nature Materials.

[97]  R. Noble,et al.  Correction to Glycerol-Based Bicontinuous Cubic Lyotropic Liquid Crystal Monomer System for the Fabrication of Thin-Film Membranes with Uniform Nanopores , 2012 .

[98]  M. Elimelech,et al.  Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. , 2011, Nano letters.

[99]  A. Asatekin,et al.  Membranes with Functionalized Nanopores for Aromaticity-Based Separation of Small Molecules. , 2019, ACS applied materials & interfaces.

[100]  V. Freger,et al.  Improving performance of spiral wound RO elements by in situ concentration polarization-enhanced radical graft polymerization , 2012 .

[101]  M. Barboiu Imidazole I–quartet Water and Proton Dipolar Channels , 2012 .

[102]  Klaus-Viktor Peinemann,et al.  Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration. , 2015, Angewandte Chemie.

[103]  Jing Guo,et al.  Cold Sintering Process: A Novel Technique for Low‐Temperature Ceramic Processing of Ferroelectrics , 2016 .

[104]  S. Nunes,et al.  Fabrication of polyacrylonitrile hollow fiber membranes from ionic liquid solutions , 2016 .

[105]  Ludovic F. Dumée,et al.  Plasma Modification and Synthesis of Membrane Materials—A Mechanistic Review , 2018, Membranes.

[106]  M. Hillmyer,et al.  Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. , 2010, ACS nano.

[107]  Wilfredo Yave,et al.  PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation , 2008 .

[108]  C. Randall,et al.  Utilizing the Cold Sintering Process for Flexible–Printable Electroceramic Device Fabrication , 2016 .

[109]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[110]  I. V. Grigorieva,et al.  Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes , 2014, Science.

[111]  Scott M. Husson,et al.  Influence of chemical coating combined with nanopatterning on alginate fouling during nanofiltration , 2016 .

[112]  Mihail Barboiu,et al.  Imidazole-quartet water and proton dipolar channels. , 2011, Angewandte Chemie.

[113]  Z. Zhong,et al.  Atomic-layer-deposition-enabled thin-film composite membranes of polyimide supported on nanoporous anodized alumina , 2017 .

[114]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[115]  Manh Hoang,et al.  Review of piezodialysis — salt removal with charge mosaic membranes , 2010 .

[116]  G. Belfort Membrane Filtration with Liquids: A Global Approach with Prior Successes, New Developments and Unresolved Challenges. , 2018, Angewandte Chemie.

[117]  A. Figoli,et al.  TamiSolve® NxG as novel solvent for polymeric membrane preparation , 2017 .

[118]  C. Randall,et al.  Cold sintering process for ZrO2‐based ceramics: significantly enhanced densification evolution in yttria‐doped ZrO2 , 2017 .

[119]  S. B. Teli,et al.  Transformation of end-of-life RO membranes into NF and UF membranes: Evaluation of membrane performance , 2015 .

[120]  J. Caro,et al.  Perovskite hollow-fiber membranes for the production of oxygen-enriched air. , 2005, Angewandte Chemie.

[121]  James J. Steffes,et al.  3D printed polyamide membranes for desalination , 2018, Science.

[122]  Andrew G. Livingston,et al.  Polymer nanofilms with enhanced microporosity by interfacial polymerization. , 2016, Nature materials.

[123]  H. Nishide,et al.  Highly selective oxygen permeation through a poly(vinylidene dichloride)-cobalt porphyrin membrane: Hopping transport of oxygen via the fixed cobalt porphyrin carrier , 1998 .

[124]  M. Pontie Old RO membranes: solutions for reuse , 2015 .

[125]  Klaus-Viktor Peinemann,et al.  Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly. , 2011, ACS nano.

[126]  Xinsheng Peng,et al.  Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets , 2012, Science.

[127]  Matthias Wessling,et al.  Regenerable polymer/ceramic hybrid nanofiltration membrane based on polyelectrolyte assembly by layer-by-layer technique , 2016 .

[128]  Matthias Wessling,et al.  High performance micro-engineered hollow fiber membranes by smart spinneret design , 2005 .

[129]  D. Paul,et al.  Polycarbonate hollow fiber membranes by melt extrusion , 1999 .

[130]  Masafumi Yoshio,et al.  Self‐Organized Liquid‐Crystalline Nanostructured Membranes for Water Treatment: Selective Permeation of Ions , 2012, Advanced materials.

[131]  M. Tsapatsis 2‐dimensional zeolites , 2014 .

[132]  Sarah J. Haigh,et al.  Tunable sieving of ions using graphene oxide membranes. , 2017, Nature nanotechnology.

[133]  H. Matsuyama,et al.  Multiscale simulation on the membrane formation process via thermally induced phase separation accompanied with heat transfer , 2016 .

[134]  D. Gigmes,et al.  Dynamic interactive membranes with pressure-driven tunable porosity and self-healing ability. , 2012, Angewandte Chemie.

[135]  Y. Lee,et al.  A robust thin film composite membrane incorporating thermally rearranged polymer support for organic solvent nanofiltration and pressure retarded osmosis , 2018 .

[136]  Aleksei Aksimentiev,et al.  PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore , 2018, Nature Communications.

[137]  Wei Wang,et al.  Stimuli-responsive smart gating membranes. , 2016, Chemical Society reviews.

[138]  M. Amaral,et al.  Extending the life-cycle of reverse osmosis membranes: A review , 2017, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[139]  Andrew G. Livingston,et al.  Sustainability assessment of organic solvent nanofiltration: from fabrication to application , 2014 .

[140]  M. Hillmyer,et al.  Interfacial Polymerization of Reactive Block Polymers for the Preparation of Composite Ultrafiltration Membranes , 2014 .

[141]  Samuel I. Stupp,et al.  Ordered Sacs and Membranes Self-Assembly of Large and Small Molecules into Hierarchically , 2013 .

[142]  A. Mayes,et al.  ATRP of Amphiphilic Graft Copolymers Based on PVDF and Their Use as Membrane Additives , 2002 .

[143]  R. Noble,et al.  Polymerized Lyotropic Liquid Crystal Assemblies for Membrane Applications , 2008 .

[144]  Davide Mattia,et al.  3D printed composite membranes with enhanced anti-fouling behaviour , 2019, Journal of Membrane Science.

[145]  Claus Hélix-Nielsen,et al.  Biomimetic Membranes as a Technology Platform: Challenges and Opportunities , 2018, Membranes.

[146]  V. Abetz,et al.  Asymmetric superstructure formed in a block copolymer via phase separation. , 2007, Nature materials.

[147]  S. Kentish,et al.  A catechin/cellulose composite membrane for organic solvent nanofiltration , 2018, Journal of Membrane Science.

[148]  Ulrich Wiesner,et al.  Block copolymer-nanoparticle hybrid self-assembly , 2015 .

[149]  X. Tan,et al.  Preparation and characterization of inorganic hollow fiber membranes , 2001 .

[150]  Ayse Asatekin,et al.  Controlling and Expanding the Selectivity of Filtration Membranes , 2018, Chemistry of Materials.

[151]  E. Drioli,et al.  Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation , 2015 .

[152]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[153]  Haihui Wang,et al.  Dense ceramic oxygen permeable membranes and catalytic membrane reactors , 2013 .

[154]  S. Oyama,et al.  Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD) , 2013 .

[155]  Tai‐Shung Chung,et al.  A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN) , 2019, Separation and Purification Technology.

[156]  S. Nunes,et al.  Porous polymeric membranes with thermal and solvent resistance , 2017 .

[157]  M. Ulbricht,et al.  Porous poly(vinylidene fluoride) membranes with tailored properties by fast and scalable non-solvent vapor induced phase separation , 2019, Journal of Membrane Science.

[158]  C. Stafford,et al.  Molecular Layer‐by‐Layer Assembled Thin‐Film Composite Membranes for Water Desalination , 2013, Advanced materials.

[159]  G. Koeckelberghs,et al.  Transferring bulk chemistry to interfacial synthesis of TFC-membranes to create chemically robust poly(epoxyether) films , 2019, Journal of Membrane Science.

[160]  Jakob Buchheim,et al.  Ultimate Permeation Across Atomically Thin Porous Graphene , 2014, Science.

[161]  G. Piccoli,et al.  Eco-dialysis: the financial and ecological costs of dialysis waste products: is a 'cradle-to-cradle' model feasible for planet-friendly haemodialysis waste management? , 2015, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[162]  A. Julbe,et al.  Atomic Layer Deposition for Membranes: Basics, Challenges, and Opportunities , 2018, Chemistry of Materials.

[163]  M. Savelski,et al.  Shear-enhanced microfiltration of microalgae in a vibrating membrane module , 2015, Clean Technologies and Environmental Policy.

[164]  Q. Zhang,et al.  Sub‐10 nm Wide Cellulose Nanofibers for Ultrathin Nanoporous Membranes with High Organic Permeation , 2016 .

[165]  W. M. Vos,et al.  Sustainable Membrane Production through Polyelectrolyte Complexation Induced Aqueous Phase Separation , 2019, Advanced Functional Materials.

[166]  Joseph J. Richardson,et al.  Technology-driven layer-by-layer assembly of nanofilms , 2015, Science.

[167]  Eric M.V. Hoek,et al.  A review of water treatment membrane nanotechnologies , 2011 .

[168]  L. Cot,et al.  Fundamentals of inorganic membrane science and technology , 1996 .

[169]  Jeong F. Kim,et al.  Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments , 2014 .

[170]  Enrico Drioli,et al.  Towards non-toxic solvents for membrane preparation: a review , 2014 .

[171]  Ihsanullah Ihsanullah Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future , 2019, Separation and Purification Technology.

[172]  P. Z. Çulfaz-Emecen,et al.  Effect of carboxylic acid crosslinking of cellulose membranes on nanofiltration performance in ethanol and dimethylsulfoxide , 2019, Journal of Membrane Science.

[173]  F. A. Jones,et al.  Development of a Comprehensive Fouling Model for a Rotating Membrane Bioreactor System Treating Wastewater , 2015 .

[174]  S. Nunes,et al.  Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[175]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[176]  Dukjoon Kim,et al.  Toughened polymer electrolyte membranes composed of sulfonated poly(arylene ether ketone) block copolymer and organosiloxane network for fuel cell , 2019, Solid State Ionics.

[177]  M. Amaral,et al.  Environmental and economic evaluation of end-of-life reverse osmosis membranes recycling by means of chemical conversion , 2018 .

[178]  Donghun Kim,et al.  Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets , 2017, Nature.

[179]  Y. Elabd,et al.  Block Copolymers for Fuel Cells , 2011 .

[180]  Shaomin Liu,et al.  High performance perovskite hollow fibres for oxygen separation , 2011 .

[181]  L. Bergkamp,et al.  Regulating Chemical Substances under REACH: The Choice between Authorization and Restriction and the Case of Dipolar Aprotic Solvents , 2014 .

[182]  W. Jin,et al.  Design and Fabrication of Ceramic Catalytic Membrane Reactors for Green Chemical Engineering Applications , 2018, Engineering.

[183]  Adam C. Powell,et al.  Phase field simulations of early stage structure formation during immersion precipitation of polymeric membranes in 2D and 3D , 2006 .

[184]  Emma L. Smith,et al.  Deep eutectic solvents (DESs) and their applications. , 2014, Chemical reviews.

[185]  Geert-Jan Witkamp,et al.  Natural deep eutectic solvents as new potential media for green technology. , 2013, Analytica chimica acta.

[186]  Jie Shen,et al.  A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. , 2014, Angewandte Chemie.

[187]  Andrew L. Zydney,et al.  Permeability and selectivity analysis for ultrafiltration membranes , 2005 .

[188]  Wenwen Huang,et al.  Design and function of biomimetic multilayer water purification membranes , 2017, Science Advances.

[189]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[190]  Pierre Aimar,et al.  Polyelectrolyte multilayer films as backflushable nanofiltration membranes with tunable hydrophilicity and surface charge , 2010 .

[191]  Jing Guo,et al.  Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials , 2016 .

[192]  I. Vankelecom,et al.  Optimization of the ionic liquid-based interfacial polymerization system for the preparation of high-performance, low-fouling RO membranes , 2018, Journal of Membrane Science.

[193]  D. Kaplan,et al.  Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes. , 2016, Nano letters.

[194]  Sheng Dai,et al.  Water desalination using nanoporous single-layer graphene. , 2015, Nature nanotechnology.

[195]  Jay R. Werber,et al.  Materials for next-generation desalination and water purification membranes , 2016 .

[196]  Alexander Mitsos,et al.  Rational Design of Ion Separation Membranes , 2019, Journal of Membrane Science.

[197]  Wei Wang,et al.  Synthetic 2D Polymers: A Critical Perspective and a Look into the Future. , 2018, Macromolecular rapid communications.

[198]  Klaus-Viktor Peinemann,et al.  Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes. , 2013, ACS nano.

[199]  Ryan P. Lively,et al.  Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes , 2016, Science.

[200]  Izzet Ozturk,et al.  A review on dynamic membrane filtration: materials, applications and future perspectives. , 2012, Bioresource technology.

[201]  Spray assisted layer-by-layer assembled one-bilayer polyelectrolyte reverse osmosis membranes , 2018, Journal of Membrane Science.

[202]  E. Virga,et al.  Stable Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes for Produced Water Treatment , 2019, ACS Applied Polymer Materials.

[203]  Yury Gogotsi,et al.  MXene molecular sieving membranes for highly efficient gas separation , 2018, Nature Communications.

[204]  Kang Li,et al.  Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration , 2016, Nature Communications.

[205]  Gongpin Liu,et al.  Perovskite Hollow Fibers with Precisely Controlled Cation Stoichiometry via One‐Step Thermal Processing , 2017, Advanced materials.

[206]  Jae-Young Choi,et al.  Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes , 2013, Science.

[207]  Wei Jiang,et al.  novel Nb 2 O 5-doped SrCo 0 . 8 Fe 0 . 2 O 3 − ı oxide with high permeability and stability or oxygen separation , 2012 .

[208]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[209]  Jason P. Hallett,et al.  Green and Sustainable Solvents in Chemical Processes. , 2018, Chemical reviews.

[210]  Gang Xu,et al.  Ion sieving in graphene oxide membranes via cationic control of interlayer spacing , 2017, Nature.

[211]  M. Ulbricht 1.5 State-of-the-Art and Perspectives of Organic Materials for Membrane Preparation , 2017 .

[212]  M. Ulbricht,et al.  Surface micro-patterning as a promising platform towards novel polyamide thin-film composite membranes of superior performance , 2017 .

[213]  Junkal Landaburu-Aguirre,et al.  Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination , 2016 .

[214]  Wei Zhang,et al.  Performance characterization of nanofiltration membranes based on rigid star amphiphiles. , 2007, Environmental science & technology.

[215]  E. Sudhölter,et al.  Poly (maleic anhydride-alt-1-alkenes) directly grafted to γ-alumina for high-performance organic solvent nanofiltration membranes , 2018, Journal of Membrane Science.

[216]  M. Barboiu,et al.  Systems membranes--combining the supramolecular and dynamic covalent polymers for gas-selective dynameric membranes. , 2012, Chemical communications.

[217]  S. Nunes,et al.  Preparation of PEEK Membranes with Excellent Stability Using Common Organic Solvents , 2020, Industrial & Engineering Chemistry Research.

[218]  Patrick O. Saboe,et al.  Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes , 2018, Nature Communications.

[219]  Xiaobo Dong,et al.  Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS) Fabrication of Polysulfone Membranes , 2018, Membranes.

[220]  Benny D. Freeman,et al.  Maximizing the right stuff: The trade-off between membrane permeability and selectivity , 2017, Science.

[221]  Hongjian Wang,et al.  Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations , 2019, Nature Communications.

[222]  Dan Zhao,et al.  Advanced Porous Materials in Mixed Matrix Membranes , 2018, Advanced materials.