Technological advances in maize breeding: past, present and future

Maize has for many decades been both one of the most important crops worldwide and one of the primary genetic model organisms. More recently, maize breeding has been impacted by rapid technological advances in sequencing and genotyping technology, transformation including genome editing, doubled haploid technology, parallelled by progress in data sciences and the development of novel breeding approaches utilizing genomic information. Herein, we report on past, current and future developments relevant for maize breeding with regard to (1) genome analysis, (2) germplasm diversity characterization and utilization, (3) manipulation of genetic diversity by transformation and genome editing, (4) inbred line development and hybrid seed production, (5) understanding and prediction of hybrid performance, (6) breeding methodology and (7) synthesis of opportunities and challenges for future maize breeding.

[1]  G. Shull The composition of a field of maize , 1908 .

[2]  C. Davenport DEGENERATION, ALBINISM AND INBREEDING. , 1908, Science.

[3]  A. Bruce THE MENDELIAN THEORY OF HEREDITY AND THE AUGMENTATION OF VIGOR. , 1910, Science.

[4]  R. Emerson Genetical Studies of Variegated Pericarp in Maize. , 1917, Genetics.

[5]  D. F. Jones,et al.  Dominance of Linked Factors as a Means of Accounting for Heterosis. , 1917, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Rhoades CYTOPLASMIC INHERITANCE OF MALE STERILITY IN ZEA MAYS. , 1931, Science.

[7]  H. F. Smith,et al.  A DISCRIMINANT FUNCTION FOR PLANT SELECTION , 1936 .

[8]  G. Sprague,,et al.  Genetic Effects of Ultra-Violet Radiation in Maize: II. Filtered Radiations. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Rhoades Effect of the Dt Gene on the Mutability of the a(1) Allele in Maize. , 1938, Genetics.

[10]  M. T. Jenkins The segregation of genes affecting yield of grain in maize. , 1940 .

[11]  W. R. Singleton Hybrid Vigor and Its Utilization in Sweet Corn Breeding , 1941, The American Naturalist.

[12]  L. Stadler,et al.  Genetic Effects of Ultraviolet Radiation in Maize. IV. Comparison of Monochromatic Radiations. , 1942, Genetics.

[13]  E. Anderson,et al.  Races of Zea Mays: I. Their Recognition and Classification , 1942 .

[14]  J. Einset Chromosome Length in Relation to Transmission Frequency of Maize Trisomes. , 1943, Genetics.

[15]  L. N. Hazel The Genetic Basis for Constructing Selection Indexes. , 1943, Genetics.

[16]  F. H. Hull Recurrent Selection for Specific Combining Ability in Corn1 , 1945 .

[17]  H. F. Robinson,et al.  A Breeding Procedure Designed To Make Maximum Use of Both General and Specific Combining Ability , 1949 .

[18]  S. S. Chase Monoploid Frequencies in a Commercial Double Cross Hybrid Maize, and in Its Component Single Cross Hybrids and Inbred Lines. , 1949, Genetics.

[19]  M. A. Stahmann,et al.  The mutagenic action of mustard gas on zea mays. , 1950, The Journal of heredity.

[20]  B. Mcclintock The origin and behavior of mutable loci in maize , 1950, Proceedings of the National Academy of Sciences.

[21]  E. J. Wellhausen,et al.  Races of maize in Mexico. Their origin, characteristics and distribution. , 1952 .

[22]  S. S. Chase Production of Homozygous Diploids of Maize from Monoploids1 , 1952 .

[23]  I. J. Johnson,et al.  Performance of Recovered Popcorn Inbred Lines Derived from Outcrosses to Dent Corn 1 , 1953 .

[24]  Earl O. Heady,et al.  Simplified Presentation and Logical Aspects of Linear Programming Technique , 1954 .

[25]  E. Dollinger Studies on Induced Mutation in Maize. , 1954, Genetics.

[26]  James N. Boles Linear Programming and Farm Management Analysis , 1955 .

[27]  M. G. Nuffer Additional Evidence on the Effect of X-Ray and Ultraviolet Radiation on Mutation in Maize. , 1957, Genetics.

[28]  A. Robertson Optimum Group Size in Progeny Testing and Family Selection , 1957 .

[29]  A. Robertson A theory of limits in artificial selection , 1960, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  M. G. Neuffer,et al.  Mutagenic Action of Ethyl Methanesulfonate in Maize , 1963, Science.

[31]  E. Coe,et al.  THE DETECTION OF HAPLOIDS IN MAIZE , 1964 .

[32]  D. Duvick Cytoplasmic Pollen Sterility in Corn , 1965 .

[33]  E. Amano,et al.  Mutations induced by ethyl methanesulfonate in maize. , 1965, Mutation research.

[34]  E. Coe,et al.  Preparation of Nucleic Acids and a Genetic Transformation Attempt in Maize 1 , 1966 .

[35]  C. E. Cress Reciprocal Recurrent Selection and Modifications in Simulated Populations1 , 1967 .

[36]  C. O. Grogan,et al.  THE MUTAGENIC EFFECTS OF GAMMA RAYS ON ZEA MAYS IN RELATION TO EAR LOCATION. , 1967 .

[37]  J. Kermicle Androgenesis Conditioned by a Mutation in Maize , 1969, Science.

[38]  S. Eberhart Factors effecting efficiencies of breeding methods. , 1970 .

[39]  A. Fraser,et al.  Computer models in genetics , 1970 .

[40]  P. Chourey,et al.  Ethyl methanesulfonate-induced mutations of the Sh1 protein in maize. , 1971, Mutation research.

[41]  M. Bulmer,et al.  The Effect of Selection on Genetic Variability , 1971, The American Naturalist.

[42]  C. R. Henderson,et al.  Best linear unbiased estimation and prediction under a selection model. , 1975, Biometrics.

[43]  R. W. Jugenheimer Corn: Improvement, Seed Production, and Uses , 1976 .

[44]  A. Hallauer,et al.  Relation Between Inbred and Hybrid Traits in Maize 1 , 1977 .

[45]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[46]  E. Coe,et al.  Paraffin oil technique for treating mature corn pollen with chemical mutagens , 1978 .

[47]  J. Birchler The cytogenetic localization of the alcohol dehydrogenase-1 locus in maize. , 1980, Genetics.

[48]  A. Hallauer,et al.  Quantitative Genetics in Maize Breeding , 1981 .

[49]  T. Paratasilpin A Note on Haploidy , 1984 .

[50]  S. K. St. Martin,et al.  Computer simulation as a tool in teaching introductory plant breeding , 1984 .

[51]  M. S. Zuber,et al.  1985 United States Farm Maize Germplasm Base and Commercial Breeding Strategies 1 , 1986 .

[52]  O. S. Smith Covariance between Line per se and Testcross Performance 1 , 1986 .

[53]  V. Walbot,et al.  Stable transformation of maize after gene transfer by electroporation , 1986, Nature.

[54]  N. Grimsley,et al.  Agrobacterium-mediated delivery of infectious maize streak virus into maize plants , 1987, Nature.

[55]  R. Phillips,et al.  Genomic rearrangements in maize induced by tissue culture , 1987 .

[56]  F. F. Dicke,et al.  The Most Important Corn Insects , 1988 .

[57]  B. Burr,et al.  Gene mapping with recombinant inbreds in maize. , 1988, Genetics.

[58]  W. L. Brown,et al.  Races of corn. , 1988 .

[59]  D. Smith,et al.  Diseases of Corn , 1988 .

[60]  D. Pierce,et al.  Genetically transformed maize plants from protoplasts. , 1988, Science.

[61]  C. O. Gardner,et al.  Application of an Optimization Model to Multi-Trait Selection Programs , 1988 .

[62]  T. Helentjaris,et al.  Mapping RFLP loci in maize using B-A translocations. , 1989, Genetics.

[63]  A. Jeffreys,et al.  DNA fingerprints applied to gene introgression in breeding programs. , 1990, Genetics.

[64]  P. Lemaux,et al.  Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants. , 1990, The Plant cell.

[65]  C. Mariani,et al.  Induction of male sterility in plants by a chimaeric ribonuclease gene , 1990, Nature.

[66]  Wayne L. Winston,et al.  Introduction to mathematical programming , 1991 .

[67]  O. Smith,et al.  Retriction Fragment Length Polymorphisms Can Differentiate among U.S. Maize Hybrids , 1991 .

[68]  S. Wright,et al.  Diversity of U.S. Hybrid Maize Germplasm as Revealed by Restriction Fragment Length Polymorphisms , 1992 .

[69]  E. Lander,et al.  Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. , 1992, Genetics.

[70]  M. Pollacsek Management of the ig gene for haploid induction in maize , 1992 .

[71]  C. Chevalet,et al.  Using markers in gene introgression breeding programs. , 1992, Genetics.

[72]  D. Dudits,et al.  Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts , 1993 .

[73]  E. Zabirova,et al.  Line 613/2 as a source of a high frequency of spontaneous diploidization in corn , 1993 .

[74]  S. Melia-Hancock,et al.  Development of a core RFLP map in maize using an immortalized F2 population. , 1993, Genetics.

[75]  D. Schwartz,et al.  Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. , 1993, Science.

[76]  D. Mather,et al.  GREGOR: Software for Genetic Simulation , 1993 .

[77]  S. Gabay-Laughnan,et al.  Male Sterility and Restorer Genes in Maize , 1994 .

[78]  R. Bernardo Prediction of maize single-cross performance using RFLPs and information from related hybrids , 1994 .

[79]  J. Kermicle Indeterminate Gametophyte (ig): Biology and Use , 1994 .

[80]  J. Wilcox,et al.  Backcrossing High Seed Protein to a Soybean Cultivar , 1995 .

[81]  P. Visscher,et al.  Marker-assisted introgression in backcross breeding programs. , 1996, Genetics.

[82]  T. Komari,et al.  High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens , 1996, Nature Biotechnology.

[83]  R. Bernardo Best linear unbiased prediction of maize single-cross performance , 1996 .

[84]  R. Bernardo Best Linear Unbiased Prediction of the Performance of Crosses between Untested Maize Inbreds , 1996 .

[85]  M. Causse,et al.  Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups , 1996 .

[86]  M. L. C. Vieira,et al.  Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers , 1997, Theoretical and Applied Genetics.

[87]  F. Hospital,et al.  Marker-assisted introgression of quantitative trait loci. , 1997, Genetics.

[88]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[89]  C. Stuber,et al.  Characterization of a Yield Quantitative Trait Locus on Chromosome Five of Maize by Fine Mapping , 1997 .

[90]  Mark Cooper,et al.  QU-GENE: a simulation platform for quantitative analysis of genetic models , 1998, Bioinform..

[91]  J. Crow 90 years ago: the beginning of hybrid maize. , 1998, Genetics.

[92]  M. Ronaghi,et al.  A Sequencing Method Based on Real-Time Pyrophosphate , 1998, Science.

[93]  Mate selection by groups. , 1998, Journal of dairy science.

[94]  J. Crow Dominance and overdominance , 1999 .

[95]  B. Obert,et al.  Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero , 1999, Plant Cell Reports.

[96]  P. Castiglioni,et al.  AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group ditsribution , 1999, Theoretical and Applied Genetics.

[97]  O. K. Chung,et al.  Relational Database System for Summarization and Interpretation of Hard Winter Wheat Regional Quality Data , 1999 .

[98]  M. Bohn,et al.  Comparison of selection strategies for marker-assisted backcrossing of a gene , 1999 .

[99]  D. Duvick,et al.  Post–Green Revolution Trends in Yield Potential of Temperate Maize in the North‐Central United States , 1999 .

[100]  M. Toro,et al.  The use of mathematical programming to control inbreeding in selection schemes , 1999 .

[101]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[102]  M. Schneerman,et al.  A survey of ig containing materials. , 2000 .

[103]  J. Whittaker,et al.  Marker-assisted selection using ridge regression. , 1999, Genetical research.

[104]  R. A. Evans,et al.  A mannose selection system for production of fertile transgenic maize plants from protoplasts , 2000, Plant Cell Reports.

[105]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[106]  F. Hospital Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. , 2001, Genetics.

[107]  J. Doebley,et al.  A single domestication for maize shown by multilocus microsatellite genotyping , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Ngozi A. Duru,et al.  Characterization of Three Maize Bacterial Artificial Chromosome Libraries toward Anchoring of the Physical Map to the Genetic Map Using High-Density Bacterial Artificial Chromosome Filter Hybridization1 , 2002, Plant Physiology.

[109]  A. Oliphant,et al.  A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). , 2002, Science.

[110]  Steven G. Schroeder,et al.  Genetic, Physical, and Informatics Resources for Maize. On the Road to an Integrated Map1 , 2002, Plant Physiology.

[111]  H. Fu,et al.  Intraspecific violation of genetic colinearity and its implications in maize , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Mark Cooper,et al.  The E(NK) model: Extending the NK model to incorporate gene-by-environment interactions and epistasis for diploid genomes , 2002, Complex..

[113]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica) , 2002, Science.

[114]  A. Kato Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage , 2002 .

[115]  J. Eder,et al.  In vivo haploid induction in maize , 2002, Theoretical and Applied Genetics.

[116]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica) , 2002, Science.

[117]  C. Soderlund,et al.  Access to the maize genome: an integrated physical and genetic map. , 2002, Plant physiology.

[118]  D. Nettleton,et al.  Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard Binary Vector System1 , 2002, Plant Physiology.

[119]  Qunfeng Dong,et al.  ZmDB, an integrated database for maize genome research , 2003, Nucleic Acids Res..

[120]  S. Muse,et al.  Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. , 2003, Genetics.

[121]  L. Stein,et al.  Maize-targeted mutagenesis: A knockout resource for maize , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[122]  J. Reif,et al.  Use of SSRs for establishing heterotic groups in subtropical maize , 2003, Theoretical and Applied Genetics.

[123]  M. Cooper,et al.  Comparison of Two Breeding Strategies by Computer Simulation , 2003 .

[124]  D. G. León,et al.  Genetic Diversity, Specific Combining Ability, and Heterosis in Tropical Maize under Stress and Nonstress Environments , 2003 .

[125]  Zuo-yu Zhao,et al.  High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize , 2002, Molecular Breeding.

[126]  T. Helentjaris,et al.  Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms , 1986, Theoretical and Applied Genetics.

[127]  P. Mangelsdorf Introgression in maize , 1961, Euphytica.

[128]  D. Zhang,et al.  Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers , 2004, Theoretical and Applied Genetics.

[129]  Nathan M. Springer,et al.  Discovery of induced point mutations in maize genes by TILLING , 2004, BMC Plant Biology.

[130]  D. Grant,et al.  A linkage map based on information from four F2 populations of maize (Zea mays L.) , 1991, Theoretical and Applied Genetics.

[131]  S. Chalyk Properties of maternal haploid maize plants and potential application to maize breeding , 1994, Euphytica.

[132]  Kent Vander Velden,et al.  The selective values of alleles in a molecular network model are context dependent. , 2004, Genetics.

[133]  M. Mézard,et al.  Toward a Theory of Marker-Assisted Gene Pyramiding , 2004, Genetics.

[134]  M. Cooper,et al.  Simulating the effects of dominance and epistasis on selection response in the CIMMYT wheat breeding program using QuCim , 2004 .

[135]  D. Grant,et al.  Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population , 2002, Plant Molecular Biology.

[136]  F. Schnell,et al.  Epistasis in maize (Zea mays L.) , 1986, Theoretical and Applied Genetics.

[137]  J. Holland Breeding: Incorporation of Exotic Germplasm , 2004 .

[138]  R. M. Goodman Encyclopedia of Plant and Crop Science , 2004 .

[139]  W. G. Hill,et al.  Linkage disequilibrium in finite populations , 1968, Theoretical and Applied Genetics.

[140]  D. Duvick Genetic progress in yield of United States maize (Zea mays L.) , 2005 .

[141]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[142]  D. Duvick The Contribution of Breeding to Yield Advances in maize (Zea mays L.) , 2005 .

[143]  M. Goodman Broadening the U.S. maize germplasm base , 2005 .

[144]  A. P. de Souza,et al.  Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? , 2005, Theoretical and Applied Genetics.

[145]  A. Rogers,et al.  Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought1[OA] , 2006, Plant Physiology.

[146]  J. Dudley,et al.  Evolution of North American Dent Corn from Public to Proprietary Germplasm , 2006 .

[147]  M. Cooper,et al.  TEMPORAL TRENDS IN SSR ALLELE FREQUENCIES ASSOCIATED WITH LONG-TERM SELECTION FOR YIELD OF MAIZE 1 , 2006 .

[148]  A. F. Troyer Adaptedness and heterosis in corn and mule hybrids , 2006 .

[149]  J. Woolliams,et al.  Optimisation of contribution of candidate parents to maximise genetic gain and restricting inbreeding using semidefinite programming (Open Access publication) , 2007, Genetics Selection Evolution.

[150]  H. Dooner,et al.  Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus , 2006, Proceedings of the National Academy of Sciences.

[151]  Nathan M. Springer,et al.  Allelic variation and heterosis in maize: how do two halves make more than a whole? , 2007, Genome research.

[152]  Optimization of DH-line based recurrent selection procedures in maize under a restricted annual loss of genetic variance , 2008, Euphytica.

[153]  T. Ishii,et al.  Optimization of the Marker-Based Procedures for Pyramiding Genes from Multiple Donor Lines: I. Schedule of Crossing between the Donor Lines , 2007 .

[154]  J. Reif,et al.  Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance , 2007, Theoretical and Applied Genetics.

[155]  C. Magorokosho Genetic diversity and performance of maize varieties from Zimbabwe, Zambia and Malawi , 2007 .

[156]  S. Chapman,et al.  Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection , 2007 .

[157]  J. Woolliams,et al.  Optimisation of contribution of candidate parents to maximise genetic gain and restricting inbreeding using semidefinite programming (Open Access publication) , 2007, Genetics Selection Evolution.

[158]  R. Bernardo,et al.  Prospects for genomewide selection for quantitative traits in maize , 2007 .

[159]  M. Goodman,et al.  Evaluation of Elite Exotic Maize Inbreds for Use in Temperate Breeding , 2008 .

[160]  Carolyn J. Lawrence,et al.  MaizeGDB: The Maize Model Organism Database for Basic, Translational, and Applied Research , 2008, International journal of plant genomics.

[161]  K. Pixley Hybrid and Open‐Pollinated Varieties in Modern Agriculture , 2008 .

[162]  Zhang Junzhi,et al.  Quantitative Trait Loci Analysis for Plant Morphological Traits in Rice (Oryza sativa L.) Under Different Environments , 2008 .

[163]  M. McMullen,et al.  Genetic Design and Statistical Power of Nested Association Mapping in Maize , 2008, Genetics.

[164]  D. Jordan,et al.  The Effect of Tropical Sorghum Conversion and Inbred Development on Genome Diversity as Revealed by High-Resolution Genotyping , 2008 .

[165]  A. Melchinger,et al.  Quantitative Trait Loci Mapping and The Genetic Basis of Heterosis in Maize and Rice , 2008, Genetics.

[166]  A. Robertson,et al.  Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle , 1950, Journal of Genetics.

[167]  J. Doebley,et al.  The origin of cornbelt maize: The isozyme evidence , 2008, Economic Botany.

[168]  G. Ye,et al.  Marker-assisted Gene Pyramiding for Inbred Line Development: Basic Principles and Practical Guidelines , 2008 .

[169]  J. Doebley,et al.  Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. , 2008, American journal of botany.

[170]  D. Duvick Genetic diversity in major farm crops on the farm and in reserve , 1984, Economic Botany.

[171]  Y. Doyon,et al.  Precise genome modification in the crop species Zea mays using zinc-finger nucleases , 2009, Nature.

[172]  B. S. Dhillon,et al.  Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data , 2009, Theoretical and Applied Genetics.

[173]  D. Piperno,et al.  Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico , 2009, Proceedings of the National Academy of Sciences.

[174]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[175]  R. Bernardo Genomewide selection for rapid introgression of exotic germplasm in maize. , 2009 .

[176]  T. Graves,et al.  The Physical and Genetic Framework of the Maize B73 Genome , 2009, PLoS genetics.

[177]  Noel Kingsbury,et al.  Hybrid: The History and Science of Plant Breeding , 2009 .

[178]  K. Voelkerding,et al.  Next-generation sequencing: from basic research to diagnostics. , 2009, Clinical chemistry.

[179]  Robert J. Elshire,et al.  A First-Generation Haplotype Map of Maize , 2009, Science.

[180]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[181]  Peter J. Bradbury,et al.  The Genetic Architecture of Maize Flowering Time , 2009, Science.

[182]  Nathan M. Springer,et al.  Heterosis Is Prevalent for Multiple Traits in Diverse Maize Germplasm , 2009, PloS one.

[183]  S. Hake,et al.  Mutagenesis – the Key to Genetic Analysis , 2009 .

[184]  D. Gurian-Sherman failure to yield Evaluating the Performance of Genetically Engineered Crops , 2009 .

[185]  H. Piepho Ridge Regression and Extensions for Genomewide Selection in Maize , 2009 .

[186]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[187]  W. L. Merrill,et al.  The diffusion of maize to the southwestern United States and its impact , 2009, Proceedings of the National Academy of Sciences.

[188]  A. Vignal,et al.  Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review , 2010, Genetics Selection Evolution.

[189]  C. Magorokosho,et al.  Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms , 2009, Theoretical and Applied Genetics.

[190]  G. Weber,et al.  Blockage of mitosis in maize root tips using colchicine-alternatives , 2010, Protoplasma.

[191]  A. F. Troyer,et al.  Heterosis decreasing in hybrids: yield test inbreds. , 2009 .

[192]  A. Melchinger,et al.  Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers , 2010, Theoretical and Applied Genetics.

[193]  M. Sorrells,et al.  Genomic Selection for Crop Improvement , 2009 .

[194]  H. Puchta,et al.  Breaking news: Plants mutate right on target , 2010, Proceedings of the National Academy of Sciences.

[195]  J. Holland,et al.  Estimating and Interpreting Heritability for Plant Breeding: An Update , 2010 .

[196]  G. Dicu,et al.  New inducers of maternal haploids in maize. , 2010 .

[197]  J. Sólyom,et al.  Structure and dynamics , 2010 .

[198]  J. Jannink Dynamics of long-term genomic selection , 2010, Genetics Selection Evolution.

[199]  David R. Riley,et al.  Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species , 2010, Genome Biology.

[200]  S. Turner,et al.  Real-time DNA sequencing from single polymerase molecules. , 2010, Methods in enzymology.

[201]  J. Doebley,et al.  Genetic signals of origin, spread, and introgression in a large sample of maize landraces , 2010, Proceedings of the National Academy of Sciences.

[202]  James C. Schnable,et al.  Following Tetraploidy in Maize, a Short Deletion Mechanism Removed Genes Preferentially from One of the Two Homeologs , 2010, PLoS biology.

[203]  A. Hallauer,et al.  Selection: Experimental Results , 2010 .

[204]  V. Brendel,et al.  Genome-Wide Distribution of Transposed Dissociation Elements in Maize[W][OA] , 2010, Plant Cell.

[205]  B. C. Viraktamath,et al.  Allele mining in crops: prospects and potentials. , 2010, Biotechnology advances.

[206]  J. Woolliams,et al.  The Impact of Genetic Architecture on Genome-Wide Evaluation Methods , 2010, Genetics.

[207]  Pan Xu,et al.  An optimization approach to gene stacking , 2011, Eur. J. Oper. Res..

[208]  Rita H. Mumm,et al.  The role and basics of computer simulation in support of critical decisions in plant breeding , 2011, Molecular Breeding.

[209]  Peter J. Bradbury,et al.  Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population , 2011, Nature Genetics.

[210]  Xiaoling Liang,et al.  Genetic Contribution to Advanced Yield for Maize Hybrids Released from 1970 to 2000 in China , 2011 .

[211]  O. Martin,et al.  A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome , 2011, PloS one.

[212]  James C. Schnable,et al.  Genes Identified by Visible Mutant Phenotypes Show Increased Bias toward One of Two Subgenomes of Maize , 2011, PloS one.

[213]  Peter J. Bradbury,et al.  Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize , 2011, Proceedings of the National Academy of Sciences.

[214]  Stefan Canzar,et al.  A Mathematical Programming Approach to Marker-Assisted Gene Pyramiding , 2011, WABI.

[215]  T. Shah,et al.  Comparative SNP and Haplotype Analysis Reveals a Higher Genetic Diversity and Rapider LD Decay in Tropical than Temperate Germplasm in Maize , 2011, PloS one.

[216]  M. Frisch,et al.  Selection strategies for marker-assisted backcrossing with high-throughput marker systems , 2011, Theoretical and Applied Genetics.

[217]  Cecilia Décima Oneto,et al.  Maize Genetic Transformation , 2011 .

[218]  Peter J. Bradbury,et al.  Genome-wide association study of leaf architecture in the maize nested association mapping population , 2011, Nature Genetics.

[219]  M. Tenaillon,et al.  A European perspective on maize history. , 2011, Comptes rendus biologies.

[220]  M. G. Neuffer,et al.  Induced mutations in maize. , 2011 .

[221]  K. Wright,et al.  Increasing Maize Productivity in China by Planting Hybrids with Germplasm that Responds Favorably to Higher Planting Densities , 2011 .

[222]  A. Leakey,et al.  Impairment of C(4) photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO(2)] in maize. , 2011, Journal of experimental botany.

[223]  J. Araus,et al.  Molecular Characterization of a Diverse Maize Inbred Line Collection and its Potential Utilization for Stress Tolerance Improvement , 2011 .

[224]  J. Dekker,et al.  Hi-C: a comprehensive technique to capture the conformation of genomes. , 2012, Methods.

[225]  Diversity in global maize germplasm: Characterization and utilization , 2012, Journal of Biosciences.

[226]  A. Melchinger,et al.  Haploid fertility in temperate and tropical maize germplasm , 2012 .

[227]  Peter J. Bradbury,et al.  Maize HapMap2 identifies extant variation from a genome in flux , 2012, Nature Genetics.

[228]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[229]  J. Chen,et al.  Genome-wide genetic changes during modern breeding of maize , 2012, Nature Genetics.

[230]  Hsiao-Pei Yang,et al.  Genomic Selection in Plant Breeding: A Comparison of Models , 2012 .

[231]  J. Boeke,et al.  Active transposition in genomes. , 2012, Annual review of genetics.

[232]  N. Ramankutty,et al.  Recent patterns of crop yield growth and stagnation , 2012, Nature Communications.

[233]  S. Kaeppler Heterosis: Many Genes, Many Mechanisms—End the Search for an Undiscovered Unifying Theory , 2012 .

[234]  Cheng-Ting Yeh,et al.  Genic and nongenic contributions to natural variation of quantitative traits in maize , 2012, Genome research.

[235]  B. Segerman The genetic integrity of bacterial species: the core genome and the accessory genome, two different stories , 2012, Front. Cell. Inf. Microbio..

[236]  M. Hufford,et al.  Historical genomics of North American maize , 2012, Proceedings of the National Academy of Sciences.

[237]  Chengsong Zhu,et al.  Computer simulation in plant breeding , 2012 .

[238]  M. Kent,et al.  Spatial Structure and Climatic Adaptation in African Maize Revealed by Surveying SNP Diversity in Relation to Global Breeding and Landrace Panels , 2012, PloS one.

[239]  R. H. Mumm,et al.  Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression , 2013, Molecular Breeding.

[240]  D. Jackson,et al.  Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus , 2013, Nature Genetics.

[241]  M. Hufford,et al.  The Genomic Signature of Crop-Wild Introgression in Maize , 2012, PLoS genetics.

[242]  B. Servin,et al.  Adaptation of Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus , 2013, PloS one.

[243]  M. Hufford,et al.  Correction: The Genomic Signature of Crop-Wild Introgression in Maize , 2013, PLoS Genetics.

[244]  Shaokun Li,et al.  Maize Yield Gains in Northeast China in the Last Six Decades , 2013 .

[245]  F. Below,et al.  Changes in Nitrogen Use Traits Associated with Genetic Improvement for Grain Yield of Maize Hybrids Released in Different Decades , 2013 .

[246]  K. Koch,et al.  Genetic and molecular analyses of UniformMu transposon insertion lines. , 2013, Methods in molecular biology.

[247]  R. H. Mumm,et al.  Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation , 2013, Molecular Breeding.

[248]  T. Zerjal,et al.  Out of America: tracing the genetic footprints of the global diffusion of maize , 2013, Theoretical and Applied Genetics.

[249]  O. Martin,et al.  Intraspecific variation of recombination rate in maize , 2013, Genome Biology.

[250]  Dennis A. Benson,et al.  GenBank , 2012, Nucleic acids research.

[251]  Robert J. Elshire,et al.  Comprehensive genotyping of the USA national maize inbred seed bank , 2013, Genome Biology.

[252]  J. Holland,et al.  Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection , 2014, BMC Plant Biology.

[253]  A. Carriquiry,et al.  Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures , 2014, G3: Genes, Genomes, Genetics.

[254]  M. Frisch,et al.  Selection Strategies for the Development of Maize Introgression Populations , 2014, PloS one.

[255]  Peter J. Bradbury,et al.  The Genetic Architecture Of Maize Height , 2014, Genetics.

[256]  N. Ranc,et al.  Linkage Disequilibrium with Linkage Analysis of Multiline Crosses Reveals Different Multiallelic QTL for Hybrid Performance in the Flint and Dent Heterotic Groups of Maize , 2014, Genetics.

[257]  Kang Zhang,et al.  Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. , 2014, Journal of genetics and genomics = Yi chuan xue bao.

[258]  D. Byerlee,et al.  Crop yields and global food security: will yield increase continue to feed the world? , 2014 .

[259]  Peter J. Bradbury,et al.  Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize , 2014, bioRxiv.

[260]  Ruiqiang Li,et al.  De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits , 2014, Nature Biotechnology.

[261]  A. Melchinger,et al.  Optimizing Resource Allocation for Multistage Selection in Plant Breeding with R Package Selectiongain , 2014 .

[262]  M. Stoecker,et al.  Improving hybrid seed production in corn with glyphosate-mediated male sterility. , 2014, Pest management science.

[263]  M. A. Pedraza,et al.  Insights into the Maize Pan-Genome and Pan-Transcriptome[W][OPEN] , 2014, Plant Cell.

[264]  C. Messina,et al.  Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. , 2014, Journal of experimental botany.

[265]  Xuewei Chen,et al.  A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzae pv. oryzae is essential for Xa21-mediated disease resistance , 2015, Rice.

[266]  W. Karush Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .

[267]  Yongfei Hu,et al.  Comparative genomic analysis of Acinetobacter baumannii clinical isolates reveals extensive genomic variation and diverse antibiotic resistance determinants , 2014, BMC Genomics.

[268]  R. Ortiz,et al.  Genomic selection: genome-wide prediction in plant improvement. , 2014, Trends in plant science.

[269]  V. Fack,et al.  Heuristic exploitation of genetic structure in marker-assisted gene pyramiding problems , 2015, BMC Genetics.

[270]  Hui-Li Xing,et al.  A CRISPR/Cas9 toolkit for multiplex genome editing in plants , 2014, BMC Plant Biology.

[271]  M. Eisenstein Startups use short-read data to expand long-read sequencing market , 2015, Nature Biotechnology.

[272]  M. Goodman Broadening the Genetic Diversity in Maize Breeding by Use of Exotic Germplasm , 2015 .

[273]  Michelle C. Stitzer,et al.  Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress , 2014, bioRxiv.

[274]  M. R. Ahuja,et al.  Genetic Diversity and Erosion in Plants , 2015, Sustainable Development and Biodiversity.

[275]  M. Mette,et al.  Genomic selection in hybrid breeding , 2015 .

[276]  A. Melchinger,et al.  Oil Content is Superior to Oil Mass for Identification of Haploid Seeds in Maize Produced with High‐Oil Inducers , 2015 .

[277]  B. Ganapathysubramanian,et al.  Genome-wide association analysis of seedling root development in maize (Zea mays L.) , 2015, BMC Genomics.

[278]  Frank Technow,et al.  Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation , 2015, bioRxiv.

[279]  M. Spalding,et al.  Heritable site-specific mutagenesis using TALENs in maize. , 2015, Plant biotechnology journal.

[280]  T. Würschum,et al.  Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding , 2015, Theoretical and Applied Genetics.

[281]  Peter J. Bradbury,et al.  High-resolution genetic mapping of maize pan-genome sequence anchors , 2015, Nature Communications.

[282]  D. L. Rogers,et al.  Genetic Erosion: Context Is Key , 2015 .

[283]  Kenneth L. McNally,et al.  Allele mining and enhanced genetic recombination for rice breeding , 2015, Rice.

[284]  Zhongying Zhao,et al.  Illumina Synthetic Long Read Sequencing Allows Recovery of Missing Sequences even in the “Finished” C. elegans Genome , 2015, Scientific Reports.

[285]  J. Woolliams,et al.  Genetic contributions and their optimization. , 2015, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[286]  David R. Riley,et al.  Ten years of pan-genome analyses. , 2015, Current opinion in microbiology.

[287]  Joshua K Young,et al.  Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA[OPEN] , 2015, Plant Physiology.

[288]  A. Brown,et al.  Indicators of Genetic Diversity, Genetic Erosion, and Genetic Vulnerability for Plant Genetic Resources , 2015 .

[289]  M. Bohn,et al.  Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline , 2016, G3: Genes, Genomes, Genetics.

[290]  B. Chain,et al.  The sequence of sequencers: The history of sequencing DNA , 2016, Genomics.

[291]  J. Gaffney,et al.  Robust seed systems, emerging technologies, and hybrid crops for Africa , 2016 .

[292]  Peter J. Bradbury,et al.  Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. , 2016, The Plant journal : for cell and molecular biology.

[293]  Paul Kersey,et al.  Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. , 2016, Methods in molecular biology.

[294]  R. Sathishkumar,et al.  Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.) , 2016, Front. Genet..

[295]  P. Schnable,et al.  Genomic prediction contributing to a promising global strategy to turbocharge gene banks , 2016, Nature Plants.

[296]  Brendan L. O’Connell,et al.  Chromosome-scale shotgun assembly using an in vitro method for long-range linkage , 2015, Genome research.

[297]  Joshua K Young,et al.  Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes , 2016, Nature Communications.

[298]  J. Holland,et al.  Genetic Characterization of the North Carolina State University Maize Lines , 2016 .

[299]  A. Melchinger,et al.  Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale , 2016, Theoretical and Applied Genetics.

[300]  David Foster,et al.  Advanced Analytics for Agricultural Product Development , 2016, Interfaces.

[301]  K. Siddique,et al.  Maize yield improvements in China: past trends and future directions , 2016 .

[302]  Lijuan Wang,et al.  Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross‐pollinating crops , 2015, Plant biotechnology journal.

[303]  M. Williams Alternative Mutagens for maize ( Zea mays L.) , 2016 .

[304]  A comprehensive study of the genomic differentiation between temperate Dent and Flint maize , 2016, Genome Biology.

[305]  D. Akdemir,et al.  Efficient Breeding by Genomic Mating , 2016, bioRxiv.

[306]  Yunbi Xu,et al.  Envirotyping for deciphering environmental impacts on crop plants , 2016, Theoretical and Applied Genetics.

[307]  P. Klein,et al.  Registration of 40 Converted Germplasm Sources from the Reinstated Sorghum Conversion Program , 2016 .

[308]  J. Batley,et al.  Towards plant pangenomics. , 2016, Plant biotechnology journal.

[309]  Jenny Banh,et al.  Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation[OPEN] , 2016, Plant Cell.

[310]  Yanbo Wang,et al.  Maize Doubled Haploids , 2016 .

[311]  Lisa C. Harper,et al.  MaizeGDB update: new tools, data and interface for the maize model organism database , 2015, Nucleic Acids Res..

[312]  R. Snowdon,et al.  Understanding and utilizing crop genome diversity via high-resolution genotyping. , 2016, Plant biotechnology journal.

[313]  Z. Ren,et al.  Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers , 2016, BMC Genomics.

[314]  R. Varshney,et al.  Genomic Selection for Crop Improvement , 2017, Springer International Publishing.

[315]  R. G. Matson,et al.  Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America , 2017, Science.

[316]  A. Charcosset,et al.  Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (Zea mays L.) Heterotic Groups , 2017, Genetics.

[317]  Rodrigo Lopez,et al.  Programmatic access to bioinformatics tools from EMBL-EBI update: 2017 , 2017, Nucleic Acids Res..

[318]  Jeffry D. Sander,et al.  Use of CRISPR/Cas9 for Crop Improvement in Maize and Soybean. , 2017, Progress in molecular biology and translational science.

[319]  W. Beavis,et al.  The Predicted Cross Value for Genetic Introgression of Multiple Alleles , 2017, Genetics.

[320]  D. Costich,et al.  Ensuring the genetic diversity of maize and its wild relatives , 2017 .

[321]  T. Rocheford,et al.  Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds , 2017, PloS one.

[322]  M. Olsen,et al.  Enhancing genetic gain in the era of molecular breeding , 2017, Journal of experimental botany.

[323]  Shaojiang Chen,et al.  QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize , 2017, Theoretical and Applied Genetics.

[324]  M. Nuccio,et al.  MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction , 2017, Nature.

[325]  Jianbing Yan,et al.  Contributions of Zea mays subspecies mexicana haplotypes to modern maize , 2017, Nature Communications.

[326]  F. Georges,et al.  Genome editing of crops: A renewed opportunity for food security , 2017, GM crops & food.

[327]  B. Prasanna,et al.  Tropical maize (Zea mays L.). , 2017 .

[328]  J. Batley,et al.  Speed breeding: a powerful tool to accelerate crop research and breeding , 2017, bioRxiv.

[329]  P. Kersey,et al.  Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomic Data. , 2017, Methods in molecular biology.

[330]  J. Batley,et al.  Speed breeding is a powerful tool to accelerate crop research and breeding , 2017, Nature Plants.

[331]  W. Sheridan,et al.  Genetic Screening for EMS-Induced Maize Embryo-Specific Mutants Altered in Embryo Morphogenesis , 2017, G3: Genes, Genomes, Genetics.

[332]  A. Bentley,et al.  A Two‐Part Strategy for Using Genomic Selection to Develop Inbred Lines , 2017 .

[333]  W. Beavis,et al.  Systematic design for trait introgression projects , 2017, Theoretical and Applied Genetics.

[334]  J. Joets,et al.  Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts , 2017, PLoS genetics.

[335]  S. Dreisigacker,et al.  Genetic diversity and population structure of native maize populations in Latin America and the Caribbean , 2017, PloS one.

[336]  M. Zaman-Allah,et al.  Gains in Maize Genetic Improvement in Eastern and Southern Africa: I. CIMMYT Hybrid Breeding Pipeline , 2017 .

[337]  W. Jin,et al.  A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction in Maize. , 2017, Molecular plant.

[338]  Jordan M. Eizenga,et al.  Genome graphs and the evolution of genome inference , 2017, bioRxiv.

[339]  Craig Davis,et al.  Genetic Gain Performance Metric Accelerates Agricultural Productivity , 2017, Interfaces.

[340]  C. Baes,et al.  Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. , 2017, Journal of dairy science.

[341]  E. Buckler,et al.  A study of allelic diversity underlying flowering-time adaptation in maize landraces , 2017, Nature Genetics.

[342]  Rita H. Mumm,et al.  Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize , 2016, bioRxiv.

[343]  R. H. Mumm,et al.  Correction: Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize , 2016, bioRxiv.

[344]  Chun-Chao Wang,et al.  RPAN: rice pan-genome browser for ∼3000 rice genomes , 2016, Nucleic acids research.

[345]  V. Walbot,et al.  An Agrobacterium‐delivered CRISPR/Cas9 system for high‐frequency targeted mutagenesis in maize , 2016, Plant biotechnology journal.

[346]  M. Zaman-Allah,et al.  Gains in Maize Genetic Improvement in Eastern and Southern Africa: II. CIMMYT Open-Pollinated Variety Breeding Pipeline , 2017 .

[347]  K. Mayer,et al.  European Flint reference sequences complement the maize pan-genome , 2017, bioRxiv.

[348]  M. Calus,et al.  Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs , 2017, G3: Genes, Genomes, Genetics.

[349]  Hongyu Wang,et al.  ARGOS8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions , 2016, Plant biotechnology journal.

[350]  Jeffrey Ross-Ibarra,et al.  Improved maize reference genome with single-molecule technologies , 2017, Nature.

[351]  A. Melchinger,et al.  Beyond Genomic Prediction: Combining Different Types of omics Data Can Improve Prediction of Hybrid Performance in Maize , 2018, Genetics.

[352]  M. Tollenaar,et al.  Maize Yield Potential and Density Tolerance , 2018 .

[353]  Yingrui Li,et al.  Construction of the third-generation Zea mays haplotype map , 2015, bioRxiv.

[354]  J. Hickey,et al.  Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection , 2017, Theoretical and Applied Genetics.

[355]  A. Grafen The fundamental theorem of natural selection. , 2018, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[356]  F. Below,et al.  Nitrogen Use Efficiency and the Genetic Variation of Maize Expired Plant Variety Protection Germplasm , 2018 .

[357]  A. Rasheed,et al.  Fast-Forwarding Genetic Gain. , 2018, Trends in plant science.

[358]  Liqun Rao,et al.  Construction of a multicontrol sterility system for a maize male‐sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD‐finger transcription factor , 2017, Plant biotechnology journal.

[359]  Caixia Gao The future of CRISPR technologies in agriculture , 2018, Nature Reviews Molecular Cell Biology.

[360]  Peter J. Bradbury,et al.  Dysregulation of expression correlates with rare-allele burden and fitness loss in maize , 2018, Nature.

[361]  M. Bohn,et al.  Association Mapping of Flowering and Height Traits in Germplasm Enhancement of Maize Doubled Haploid (GEM‐DH) Lines , 2018, The plant genome.

[362]  D. Sanchez,et al.  Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). , 2018, Plant science : an international journal of experimental plant biology.

[363]  Bo Wang,et al.  Gramene 2018: unifying comparative genomics and pathway resources for plant research , 2017, Nucleic Acids Res..

[364]  H. Piepho,et al.  Single-Parent Expression Is a General Mechanism Driving Extensive Complementation of Non-syntenic Genes in Maize Hybrids , 2018, Current Biology.

[365]  P. Schnable,et al.  Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes , 2018, Nature Genetics.

[366]  Asheesh K. Singh,et al.  Multi-objective optimized genomic breeding strategies for sustainable food improvement , 2018, Heredity.

[367]  Daniel L. Vera,et al.  The maize W22 genome provides a foundation for functional genomics and transposon biology , 2018, Nature Genetics.

[368]  R. C. Marucci,et al.  Maize , 2021, Natural Enemies of Insect Pests in Neotropical Agroecosystems.

[369]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .