Pathogen self-defense: mechanisms to counteract microbial antagonism,.

Natural and agricultural ecosystems harbor a wide variety of microorganisms that play an integral role in plant health, crop productivity, and preservation of multiple ecosystem functions. Interactions within and among microbial communities are numerous and range from synergistic and mutualistic to antagonistic and parasitic. Antagonistic and parasitic interactions have been exploited in the area of biological control of plant pathogenic microorganisms. To date, biocontrol is typically viewed from the perspective of how antagonists affect pathogens. This review examines the other face of this interaction: how plant pathogens respond to antagonists and how this can affect the efficacy of biocontrol. Just as microbial antagonists utilize a diverse arsenal of mechanisms to dominate interactions with pathogens, pathogens have surprisingly diverse responses to counteract antagonism. These responses include detoxification, repression of biosynthetic genes involved in biocontrol, active efflux of antibiotics, and antibiotic resistance. Understanding pathogen self-defense mechanisms for coping with antagonist assault provides a novel approach to improving the durability of biologically based disease control strategies and has implications for the deployment of transgenes (microorganisms or plants).

[1]  M. Mazzola,et al.  Variation in Sensitivity of Gaeumannomyces graminis to Antibiotics Produced by Fluorescent Pseudomonas spp. and Effect on Biological Control of Take-All of Wheat , 1995, Applied and environmental microbiology.

[2]  C. Leifert,et al.  Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. , 1995, The Journal of applied bacteriology.

[3]  A. Osbourn,et al.  Saponin detoxification by plant pathogenic fungi. , 1996, Advances in experimental medicine and biology.

[4]  J. T. de Souza,et al.  Frequency, Diversity, and Activity of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. in Dutch Take-all Decline Soils. , 2003, Phytopathology.

[5]  D. Hill,et al.  Natural products with antifungal activity from Pseudomonas biocontrol bacteria , 2000 .

[6]  M. Tomiyama,et al.  A Novel ATP-Binding Cassette Transporter Involved in Multidrug Resistance in the Phytopathogenic FungusPenicillium digitatum , 1998, Applied and Environmental Microbiology.

[7]  T. Heulin,et al.  Metabolic and Genotypic Fingerprinting of Fluorescent Pseudomonads Associated with the Douglas Fir-Laccaria bicolor Mycorrhizosphere , 1997, Applied and environmental microbiology.

[8]  J. P. Blakeman Pathogens in the foliar environment , 1993 .

[9]  J. Handelsman,et al.  Zwittermicin A biosynthetic cluster. , 1999, Gene.

[10]  D. Rigling,et al.  Biological Control of Chestnut Blight in Europe , 1994 .

[11]  B. Duffy,et al.  Zinc Improves Biocontrol of Fusarium Crown and Root Rot of Tomato by Pseudomonas fluorescens and Represses the Production of Pathogen Metabolites Inhibitory to Bacterial Antibiotic Biosynthesis. , 1997, Phytopathology.

[12]  H. Schoonbeek,et al.  Fungal ABC transporters and microbial interactions in natural environments. , 2002, Molecular plant-microbe interactions : MPMI.

[13]  T. Paulitz,et al.  The role ofPseudomonas spp. and competition for carbon, nitrogen and iron in the enhancement of appressorium formation byColletotrichum coccodes on velvetleaf , 2005, European Journal of Plant Pathology.

[14]  J. G. Hancock,et al.  Mechanism of gliotoxin action and factors mediating gliotoxin sensitivity , 1988 .

[15]  B. Matthews,et al.  Purification and characterization of an extracellular phenol oxidase from culture filtrates of Pyricularia oryzae , 1996 .

[16]  D. Nuss,et al.  Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. , 2001, Annual review of genetics.

[17]  P. Rodríguez-Palenzuela,et al.  The ybiT Gene of Erwinia chrysanthemi Codes for a Putative ABC Transporter and Is Involved in Competitiveness against Endophytic Bacteria during Infection , 2002, Applied and Environmental Microbiology.

[18]  F. O'Gara,et al.  Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens F113. , 1999, Environmental microbiology.

[19]  P. Cortesi,et al.  Variation in Tolerance and Virulence in the Chestnut Blight Fungus-Hypovirus Interaction , 2000, Applied and Environmental Microbiology.

[20]  H. Schoonbeek,et al.  Multidrug resistance in Botrytis cinerea associated with decreased accumulation of the azole fungicide oxpoconazole and increased transcription of the ABC transporter gene BcatrD , 2001 .

[21]  C. Keel,et al.  Signal transduction in plant-beneficial rhizobacteria with biocontrol properties , 2002, Antonie van Leeuwenhoek.

[22]  Michael E. Hochberg,et al.  WHEN IS BIOLOGICAL CONTROL EVOLUTIONARILY STABLE (OR IS IT) , 1997 .

[23]  R. Wheatley,et al.  The consequences of volatile organic compound mediated bacterial and fungal interactions , 2002, Antonie van Leeuwenhoek.

[24]  David A. Jones,et al.  Agrocin 434, a new plasmid encoded agrocin from the biocontrol Agrobacterium strains K84 and K1026, which inhibits biovar 2 agrobacteria , 1993 .

[25]  T. Shiraishi,et al.  Bacteriophage P4282, a parasite of Ralstonia solanacearum, encodes a bacteriolytic protein important for lytic infection of its host , 2001, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[26]  U. Schnider-Keel,et al.  Biotic Factors Affecting Expression of the 2,4-Diacetylphloroglucinol Biosynthesis Gene phlA in Pseudomonas fluorescens Biocontrol Strain CHA0 in the Rhizosphere. , 2001, Phytopathology.

[27]  F. O'Gara,et al.  Evidence for signaling between the phytopathogenic fungus Pythium ultimum and Pseudomonas fluorescens F113: P. ultimum represses the expression of genes in P. fluorescens F113, resulting in altered ecological fitness , 1997, Applied and environmental microbiology.

[28]  B. M. Gardener,et al.  Microbial populations responsible for specific soil suppressiveness to plant pathogens. , 2002, Annual review of phytopathology.

[29]  L. Zwiers,et al.  Secretion of Natural and Synthetic Toxic Compounds from Filamentous Fungi by Membrane Transporters of the ATP-binding Cassette and Major Facilitator Superfamily , 2002, European Journal of Plant Pathology.

[30]  S. Bentley,et al.  Generalized transduction in the potato blackleg pathogen Erwinia carotovora subsp. atroseptica by bacteriophage M1. , 1997, Microbiology.

[31]  A. Osbourn,et al.  Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis , 1999, Microbiology and Molecular Biology Reviews.

[32]  M. Wiebe Siderophore production by Fusarium venenatum A3/5. , 2001, Biochemical Society transactions.

[33]  P. Bakker,et al.  Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat , 2002, Antonie van Leeuwenhoek.

[34]  C. Bacon,et al.  Production of fusaric acid by Fusarium species , 1996, Applied and environmental microbiology.

[35]  G. Bruehl Soilborne plant pathogens , 1987 .

[36]  L. Moore,et al.  Transfer of pAgK84 from the biocontrol agent Agrobacterium radiobacter K84 to A. tumefaciens under field conditions. , 1996 .

[37]  E Marre,et al.  Fusicoccin: A Tool in Plant Physiology , 1979 .

[38]  E. Schnabel,et al.  Isolation and Characterization of FiveErwinia amylovora Bacteriophages and Assessment of Phage Resistance in Strains of Erwinia amylovora , 2001, Applied and Environmental Microbiology.

[39]  R. Cook,et al.  Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp , 1986, Antimicrobial Agents and Chemotherapy.

[40]  A. Levine,et al.  The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea , 2000, Current Biology.

[41]  H. Hamamoto,et al.  A novel ABC transporter gene, PMR5, is involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum , 2002, Molecular Genetics and Genomics.

[42]  G. Gullner,et al.  Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. , 2001, Plant physiology.

[43]  M. Dickman,et al.  pH Signaling in Sclerotinia sclerotiorum: Identification of a pacC/RIM1 Homolog , 2001, Applied and Environmental Microbiology.

[44]  M. Kimura,et al.  Trichothecene 3-O-Acetyltransferase Protects Both the Producing Organism and Transformed Yeast from Related Mycotoxins , 1998, The Journal of Biological Chemistry.

[45]  T. Czárán,et al.  Chemical warfare between microbes promotes biodiversity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  B. Gélie,et al.  Phage sensitivity in relation to pathogenicity and virulence of the cotton bacterial blight pathogen of Sudan , 1994 .

[47]  J. G. Scott,et al.  Cytochromes P450 and insecticide resistance. , 1999, Insect biochemistry and molecular biology.

[48]  H. Schoonbeek,et al.  The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil. , 2001, Pest management science.

[49]  I. Chet,et al.  Resistance mechanisms of Septoria tritici to antifungal products of Pseudomonas , 1992 .

[50]  H. Schoonbeek,et al.  The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. , 2001, Molecular plant-microbe interactions : MPMI.

[51]  S. Farrand,et al.  Genetic analysis of agrocin 84 production and immunity in Agrobacterium spp , 1987, Journal of bacteriology.

[52]  A. Vidaver Prospects for Control of Phytopathogenic Bacteria by Bacteriophages and Bacteriocins , 1976 .

[53]  P. Bakker,et al.  Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. , 1995 .

[54]  J. Walton,et al.  A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. , 1996, Microbiology.

[55]  Seon-Woo Lee,et al.  Genes Expressed in Pseudomonas putidaduring Colonization of a Plant-Pathogenic Fungus , 2000, Applied and Environmental Microbiology.

[56]  M. Mazzola,et al.  Effects of Fungal Root Pathogens on the Population Dynamics of Biocontrol Strains of Fluorescent Pseudomonads in the Wheat Rhizosphere , 1991, Applied and environmental microbiology.

[57]  G. Défago,et al.  Hyperparasitism of Aphanocladium album on aecidiospores and teliospores of Puccinia graminis f. sp. tritici , 1983 .

[58]  D. Dooley,et al.  Purification and Characterization of a Secreted Laccase of Gaeumannomyces graminis var.tritici , 1999, Applied and Environmental Microbiology.

[59]  C. Evans,et al.  Oxalate production by fungi : its role in pathogenicity and ecology in the soil environment , 1996 .

[60]  I. Singleton,et al.  Spatial variation in populations of Pseudomonas corrugata 2140 and pseudomonads on take-all diseased and healthy root systems of wheat , 1999 .

[61]  Michael G. Milgroom,et al.  Correlation between hypovirus transmission and the number of vegetative incompatibility (vic) genes different among isolates from a natural population of Cryphonectria parasitica. , 1996 .

[62]  D. Weller,et al.  Exploiting Genotypic Diversity of 2,4-Diacetylphloroglucinol-Producing Pseudomonas spp.: Characterization of Superior Root-Colonizing P. fluorescensStrain Q8r1-96 , 2001, Applied and Environmental Microbiology.

[63]  Frederick M. Ausubel,et al.  Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas Aeruginosa– Caenorhabditis Elegans Pathogenesis Model , 2022 .

[64]  M. López,et al.  Cocolonization of the Rhizosphere by PathogenicAgrobacterium Strains and Nonpathogenic Strains K84 and K1026, Used for Crown Gall Biocontrol , 1999, Applied and Environmental Microbiology.

[65]  J. Gloer The chemistry of fungal antagonism and defense , 1995 .

[66]  H. De Greve,et al.  Trehalose induces antagonism towards Pythium debaryanum in Pseudomonas fluorescens ATCC 17400 , 1997 .

[67]  R. Wheatley,et al.  Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates , 1999 .

[68]  S. Heeb,et al.  Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. , 2001, Molecular plant-microbe interactions : MPMI.

[69]  M. Asins,et al.  Biological Control of Agrobacterium tumefaciens, Colonization, and pAgK84 Transfer with Agrobacterium radiobacter K84 and the Tra- Mutant Strain K1026 , 1993, Applied and environmental microbiology.

[70]  L. Vajna Phytopathogenic Fusarium oxysporum Schlecht, as a Necrotrophic Mycoparasite , 1985 .

[71]  M. Wheeler,et al.  Biosynthesis and Functions of Fungal Melanins , 1986 .

[72]  J. Kinderlerer Fungal strategies for detoxification of medium chain fatty acids , 1993 .

[73]  E. Cundliffe How antibiotic-producing organisms avoid suicide. , 1989, Annual review of microbiology.

[74]  A. Fleissner,et al.  An ATP-binding cassette multidrug-resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. , 2002, Molecular plant-microbe interactions : MPMI.

[75]  A. Podile,et al.  Fusarium udum is resistant to the mycolytic activity of a biocontrol strain of Bacillus subtilis AF 1 , 1998 .

[76]  J. Whipps,et al.  Microbial interactions and biocontrol in the rhizosphere. , 2001, Journal of experimental botany.

[77]  C. R. Howell Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts. , 2003, Plant disease.

[78]  L. Moore,et al.  High frequency spontaneous mutations to agrocin 84 resistance in Agrobacterium tumefaciens and A. rhizogenes , 1982 .

[79]  J. Cooney,et al.  Impact of competitive fungi on Trichothecene production by Fusarium graminearum. , 2001, Journal of agricultural and food chemistry.

[80]  B. M. Gardener,et al.  Biological Control of Plant Pathogens: Research, Commercialization, and Application in the USA , 2002 .

[81]  F. Tovkach A Study of Erwinia carotovora Phage Resistance with the Use of Temperate Bacteriophage ZF40 , 2004, Microbiology.

[82]  A. McCracken,et al.  Siderophores produced by saprophytic bacteria as stimulants of germination of conidia of Colletotrichum musae , 1979 .

[83]  B. Lugtenberg,et al.  Molecular determinants of rhizosphere colonization by Pseudomonas. , 2001, Annual review of phytopathology.

[84]  C. Keel,et al.  Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens strain CHAO in natural soil. , 2002, Molecular plant-microbe interactions : MPMI.

[85]  R. Lumsden,et al.  Do Pathogenic Fungi Have the Potential to Inhibit Biocontrol Fungi , 1995 .

[86]  A. Leonowicz,et al.  Comparative Studies of Extracellular Fungal Laccases , 1984, Applied and environmental microbiology.

[87]  L. Moore,et al.  Agrobacterium Radiobacter Strain 84 and Biological Control of Crown Gall , 1979 .

[88]  J. J. Steffens,et al.  Mechanisms of fungicide resistance in phytopathogenic fungi. , 1996, Current opinion in biotechnology.

[89]  Trevor V. Suslow,et al.  Lognormal distribution of bacterial populations in the rhizosphere , 1984 .

[90]  P. Ji,et al.  Assessment of the Importance of Similarity in Carbon Source Utilization Profiles between the Biological Control Agent and the Pathogen in Biological Control of Bacterial Speck of Tomato , 2002, Applied and Environmental Microbiology.

[91]  B. W. Strijdom,et al.  Susceptibility of Agrobacterium tumefaciens Strains to Two Agrocin-Producing Agrobacterium Strains , 1986, Applied and environmental microbiology.

[92]  I. Furusawa,et al.  The Pgr1 mutant of Cochliobolus heterostrophus lacks a p-diphenol oxidase involved in naphthalenediol melanin synthesis , 1992 .

[93]  D. W. Fulbright,et al.  Biological control of chestnut blight : use and limitations of transmissible hypovirulence , 1991 .

[94]  M. Jackson,et al.  Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2-79 , 1992, Applied Microbiology and Biotechnology.

[95]  M. Gallo,et al.  Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. , 2002, Molecular plant-microbe interactions : MPMI.

[96]  Kornelia Smalla,et al.  Occurrence and reservoirs of antibiotic resistance genes in the environment , 2002 .

[97]  E. Tzortzakakis,et al.  Decreased ability of Pasteuria penetrans spores to attack to successive generations 0 f Meloidogynejavanica (1) , 1996 .

[98]  A. Sulakvelidze,et al.  Examination of bacteriophage as a biocontrol method for salmonella on fresh-cut fruit: a model study. , 2001, Journal of food protection.

[99]  R. Gupta,et al.  Hyphal parasitism and chlamydospore formation by Fusarium oxysporum on Rhizoctonia solani , 2004, Mycopathologia.

[100]  S. Alström Characteristics of Bacteria from Oilseed Rape in Relation to their Biocontrol Activity against Verticillium dahliae , 2001 .

[101]  J. Handelsman,et al.  Zwittermicin A resistance gene from Bacillus cereus , 1996, Journal of bacteriology.

[102]  J. Deacon,et al.  Interaction specificity of the biocontrol agent Sporothrix flocculosa : A video microscopy study , 1996 .

[103]  J. Meynard,et al.  Influence of crop management on take-all development and disease cycles on winter wheat. , 1997, Phytopathology.

[104]  J. Handelsman,et al.  Biocontrol of Soilborne Plant Pathogens. , 1996, The Plant cell.

[105]  W. Eck Chemistry of cell walls of Fusarium solani and the resistance of spores to microbial lysis , 1978 .

[106]  S. Farrand,et al.  Construction of a Tra− deletion mutant of pAgK84 to safeguard the biological control of crown gall , 1988, Molecular and General Genetics MGG.

[107]  D. Parbery,et al.  Phyllosphere antagonists and appressorium formation in Colletotrichum gloeosporioides , 1976 .

[108]  J. Cooney,et al.  Trichoderma/pathogen interactions: measurement of antagonistic chemicals produced at the antagonist/pathogen interface using a tubular bioassay , 1998, Letters in applied microbiology.

[109]  D. Nuss,et al.  Using Hypoviruses to Probe and Perturb Signal Transduction Processes Underlying Fungal Pathogenesis. , 1996, The Plant cell.

[110]  G. Griffith,et al.  Interspecific interactions and mycelial morphogenesis of Hypholoma fasciculare (Agaricaceae) , 1994 .

[111]  S. Olsson,et al.  Induction of Laccase Activity in Rhizoctonia solani by Antagonistic Pseudomonas fluorescens Strains and a Range of Chemical Treatments , 2001, Applied and Environmental Microbiology.

[112]  D. Haas,et al.  Fusaric Acid-Producing Strains of Fusarium oxysporum Alter 2,4-Diacetylphloroglucinol Biosynthetic Gene Expression in Pseudomonas fluorescens CHA0 In Vitro and in the Rhizosphere of Wheat , 2002, Applied and Environmental Microbiology.

[113]  J. Handelsman,et al.  Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85 , 1994, Applied and environmental microbiology.

[114]  T. Parkin,et al.  Microbial Production of Volatile Organic Compounds in Soil Microcosms , 1996 .

[115]  R. Lumsden,et al.  Interactions of Gliocladium virens with Rhizoctonia solani and Pythium ultimum in Non-sterile Potting Medium , 1997 .

[116]  G. Bruening,et al.  Will transgenic crops generate new viruses and new diseases? , 1994, Science.

[117]  B. Ownley Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. , 1992 .

[118]  F. O'Gara,et al.  Exploitation of genetically modified inoculants for industrial ecology applications , 2002, Antonie van Leeuwenhoek.

[119]  J. Lockwood,et al.  Responses of Fungi to Nutrient-Limiting Conditions and to Inhibitory Substances in Natural Habitats , 1981 .

[120]  H. Vanetten,et al.  Phytoalexin (and phytoanticipin) tolerance as a virulence trait: why is it not required by all pathogens? , 2001 .

[121]  P. Cortesi,et al.  Analysis of population structure of the chestnut blight fungus based on vegetative incompatibility genotypes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[122]  H. Amir,et al.  Correlations entre quelques caracteristiques ecologiques de differentes souches de Fusarium avec reference particuliere a leur persistance dans le sol , 1992 .

[123]  P. Cortesi,et al.  Programmed cell death correlates with virus transmission in a filamentous fungus , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[124]  J. Lawrey Chemical Interactions Between Two Lichen-degrading Fungi , 2000, Journal of Chemical Ecology.

[125]  N. Koedam,et al.  Trehalose Induces Antagonism towards Pythium debaryanum in Pseudomonas fluorescens ATCC 17400 , 1998, Applied and Environmental Microbiology.

[126]  S. Archer,et al.  The Role of a Bacterial Siderophore and of Iron in the Germination and Appressorium Formation by Conidia of Colletotrichum acutatum , 1986 .

[127]  T. Mitchell,et al.  Biodegradation of the Polyketide Toxin Cercosporin , 2002, Applied and Environmental Microbiology.

[128]  R. Upchurch,et al.  Over-expression of the cercosporin facilitator protein, CFP, in Cercospora kikuchii up-regulates production and secretion of cercosporin. , 2001, FEMS microbiology letters.

[129]  R. Lenski,et al.  Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage , 2000 .

[130]  H. Barnett,et al.  The Fungal Host-Parasite Relationship , 1973 .

[131]  R. Bothast,et al.  Enhancement of disease caused by Colletotrichum truncatum in Sesbania exaltata by coinoculating with epiphytic bacteria , 1991 .

[132]  R. Belanger,et al.  Purification and characterization of new fatty acids with antibiotic activity produced bySporothrix flocculosa , 1996, Journal of Chemical Ecology.

[133]  P. Cortesi,et al.  Genetics of Vegetative Incompatibility inCryphonectria parasitica , 1998, Applied and Environmental Microbiology.

[134]  B. Duffy,et al.  Mycotoxigenic Fusarium and Deoxynivalenol Production Repress Chitinase Gene Expression in the Biocontrol Agent Trichoderma atroviride P1 , 2003, Applied and Environmental Microbiology.

[135]  P. Oger,et al.  Engineering bacterial competitiveness and persistence in the phytosphere. , 2002, Molecular plant-microbe interactions : MPMI.

[136]  M. D. Waard Significance of ABC transporters in fungicide sensitivity and resistance. , 1997 .

[137]  P. Oger,et al.  Iron-Binding Compounds fromAgrobacterium spp.: Biological Control StrainAgrobacterium rhizogenes K84 Produces a Hydroxamate Siderophore , 2001, Applied and Environmental Microbiology.

[138]  J. Handelsman,et al.  Production of kanosamine by Bacillus cereus UW85 , 1996, Applied and environmental microbiology.

[139]  C. McCulloch,et al.  Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. , 2001, Genetics.

[140]  P. Sandven Does the mycotoxin citrinin function as a sun protectant in conidia from Penicillium verrucosum , 2004, Mycopathologia.

[141]  D. Gross,et al.  Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases , 1999, Microbiology and Molecular Biology Reviews.

[142]  B. Völksch,et al.  Toxin production by pathovars of Pseudomonas syringae and their antagonistic activities against epiphytic microorganisms , 1998, Journal of basic microbiology.

[143]  M. Milgroom,et al.  Incidence and Diversity of Double-Stranded RNAs Occurring in the Chestnut Blight Fungus, Cryphonectria parasitica, in China and Japan. , 1998, Phytopathology.

[144]  M. López,et al.  Evidence of Biological Control of Agrobacterium tumefaciens Strains Sensitive and Resistant to Agrocin 84 by Different Agrobacterium radiobacter Strains on Stone Fruit Trees , 1989, Applied and environmental microbiology.

[145]  C. Leifert,et al.  Development of resistance in Botryotinia fuckeliana (de Bary) Whetzel against the biological control agent Bacillus subtilis CL27 , 1994 .

[146]  S. McCormick,et al.  TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast , 1999, Molecular and General Genetics MGG.

[147]  D. Mansuy The great diversity of reactions catalyzed by cytochromes P450. , 1998, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[148]  C. Keel,et al.  Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations , 1996, Applied and environmental microbiology.

[149]  K. Mott,et al.  Syringomycin, a bacterial phytotoxin, closes stomata. , 1989, Plant physiology.

[150]  W. Wackernagel,et al.  Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. , 2000, FEMS microbiology ecology.

[151]  K. F. Baker,et al.  The nature and practice of biological control of plant pathogens , 1985 .

[152]  J. Takemoto,et al.  Saprophytic Pseudomonas syringae strain M1 of wheat produces cyclic lipodepsipeptides. , 1995, FEMS microbiology letters.

[153]  R. Upchurch,et al.  Transgenic assessment of CFP-mediated cercosporin export and resistance in a cercosporin-sensitive fungus , 2002, Current Genetics.

[154]  K. Davies,et al.  Attachment tests of Pasteuria penetrans to the cuticle of plant and animal parasitic nematodes, free living nematodes and srf mutants of Caenorhabditis elegans , 1999, Journal of Helminthology.

[155]  A. Osbourn Preformed Antimicrobial Compounds and Plant Defense against Fungal Attack. , 1996, The Plant cell.

[156]  M. López,et al.  Agrobacterium radiobacter strains K84, K1026 and K84 Agr‐ produce an antibiotic‐like substance, active in vitro against A. tumefaciens and phytopathogenic Erwinia and Pseudomonas spp. , 1994 .

[157]  D. D. Giorgio,et al.  Syringopeptins, Pseudomonas syringae pv. syringae phytotoxins, resemble syringomycin in closing stomata , 1996 .

[158]  S. Gowen,et al.  Selection for increased host resistance and increased pathogen specificity in the Meloidogyne-Pasteuria penetrans interaction , 1992 .

[159]  J. Handelsman,et al.  Zwittermicin A, an Antifungal and Plant Protection Agent from Bacillus cereus. , 1994 .

[160]  J. Flaherty,et al.  Control of bacterial spot on tomato in the greenhouse and field with h-mutant bacteriophages. , 2000 .

[161]  David M. Weller,et al.  Biological control of soilborne plant pathogens in the rhizosphere with bacteria , 1988 .

[162]  Seung-moon Park,et al.  Characterization of a fungal protein kinase from Cryphonectria parasitica and its transcriptional upregulation by hypovirus , 2002, Molecular microbiology.

[163]  R. Wheatley,et al.  The production of volatile organic compounds during nitrogen transformations in soils , 1996, Plant and Soil.

[164]  J. Whipps Developments in the Biological Control of Soil-borne Plant Pathogens , 1997 .

[165]  Mccormick,et al.  Transgenic expression of the TRI101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol. , 2000, Plant science : an international journal of experimental plant biology.

[166]  A. Rincé,et al.  Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity , 1997, Applied and environmental microbiology.

[167]  R. W. Jones,et al.  Variation in Sensitivity Among Anastomosis Groups of Rhizoctonia solani to the Antibiotic Gliotoxin , 1987 .

[168]  C. Keel,et al.  Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions , 1989, The EMBO journal.

[169]  Dieter Haas,et al.  Autoinduction of 2,4-Diacetylphloroglucinol Biosynthesis in the Biocontrol Agent Pseudomonas fluorescensCHA0 and Repression by the Bacterial Metabolites Salicylate and Pyoluteorin , 2000, Journal of bacteriology.

[170]  D. Touati,et al.  Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937. , 2001, Molecular plant-microbe interactions : MPMI.

[171]  M. Daub,et al.  The Photoactivated Cercospora Toxin Cercosporin: Contributions to Plant Disease and Fundamental Biology. , 2000, Annual review of phytopathology.

[172]  J. Smilanick,et al.  Syringomycin E Produced by Biological Control Agents Controls Green Mold on Lemons , 1998 .

[173]  J. Loper,et al.  Utilization of Heterologous Siderophores Enhances Levels of Iron Available to Pseudomonas putida in the Rhizosphere , 1999, Applied and Environmental Microbiology.

[174]  Jos M. Raaijmakers,et al.  Antibiotic production by bacterial biocontrol agents , 2004, Antonie van Leeuwenhoek.