Fractal Generation via CR Iteration Scheme With S-Convexity

The visual beauty, self-similarity, and complexity of Mandelbrot sets and Julia sets have made an attractive field of research. One can find many generalizations of these sets in the literature. One such generalization is the use of results from fixed-point theory. The aim of this paper is to provide escape criterion and generate fractals (Julia sets and Mandelbrot sets) via CR iteration scheme with s-convexity. Many graphics of Mandelbrot sets and Julia sets of the proposed three-step iterative process with s-convexity are presented. We think that the results of this paper can inspire those who are interested in generating automatically aesthetic patterns.

[1]  M. Rani,et al.  Superior Julia Set , 2004 .

[2]  Bhagwati Prasad,et al.  Dynamics of iterative schemes for quadratic polynomial , 2017 .

[3]  Robert L. Devaney,et al.  A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .

[4]  Ashish Negi,et al.  Non Linear Dynamics of Ishikawa Iteration , 2010 .

[5]  M. R. Pinheiro,et al.  S-convexity-foundations for Analysis , 2007 .

[6]  Wataru Takahashi,et al.  A convexity in metric space and nonexpansive mappings, I , 1970 .

[7]  Shin Min Kang,et al.  Fractal Generation in Modified Jungck–S Orbit , 2019, IEEE Access.

[8]  Lech Maligranda,et al.  Some remarks ons-convex functions , 1994 .

[9]  Renu Chugh,et al.  Strong Convergence of a New Three Step Iterative Scheme in Banach Spaces , 2012 .

[10]  Mamta Rani,et al.  Superior Mandelbrot Set , 2004 .

[11]  J. Rogers Chaos , 1876 .

[12]  Shin Min Kang,et al.  Fixed point results for fractal generation in Noor orbit and s-convexity , 2016, SpringerPlus.

[13]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[14]  Shin Min Kang,et al.  Mandelbrot and Julia Sets via Jungck–CR Iteration With $s$ –Convexity , 2019, IEEE Access.

[15]  Ashish Negi,et al.  New Julia Sets of Ishikawa Iterates , 2010 .

[16]  Shin Min Kang,et al.  Tricorns and Multicorns of -Iteration Scheme , 2015 .

[17]  Faisal Ali,et al.  Fractals through Modified Iteration Scheme , 2016 .

[18]  G. Julia Mémoire sur l'itération des fonctions rationnelles , 1918 .

[19]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[20]  Josip Pecaric,et al.  Hadamard-type inequalities for s-convex functions , 2007, Appl. Math. Comput..

[21]  G. Doetsch,et al.  Zur Theorie der konvexen Funktionen , 1915 .

[22]  Renu Chugh,et al.  Julia sets and Mandelbrot sets in Noor orbit , 2014, Appl. Math. Comput..

[23]  Maslina Darus,et al.  Co-ordinated s-Convex Function in the First Sense with Some Hadamard-Type Inequalities , 2008 .