Kernel-Based Meshless Methods

Abstract. ...??????... to be supplied.later ..??????... ...??????... to be supplied.later ..??????...

[1]  I. J. Schoenberg On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space , 1937 .

[2]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[3]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[4]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[5]  Herbert Meschkowski,et al.  Hilbertsche Räume mit Kernfunktion , 1962 .

[6]  C. Reinsch Smoothing by spline functions , 1967 .

[7]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[8]  C. Reinsch Smoothing by spline functions. II , 1971 .

[9]  D. H. McLain,et al.  Drawing Contours from Arbitrary Data Points , 1974, Comput. J..

[10]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[11]  George Gasper,et al.  Positive Integrals of Bessel Functions , 1975 .

[12]  J. Stewart Positive definite functions and generalizations, an historical survey , 1976 .

[13]  D. H. McLain,et al.  Two Dimensional Interpolation from Random Data , 1976, Comput. J..

[14]  H. H. Rachford,et al.  Local $H^{-1}$ Galerkin and adjoint local $H^{-1}$ Galerkin procedures for elliptic equations , 1977 .

[15]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[16]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[17]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[18]  D. Ragozin Error bounds for derivative estimates based on spline smoothing of exact or noisy data , 1983 .

[19]  D. Cox MULTIVARIATE SMOOTHING SPLINE FUNCTIONS , 1984 .

[20]  E. Kansa Application of Hardy's multiquadric interpolation to hydrodynamics , 1985 .

[21]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[22]  R. Farwig,et al.  Multivariate interpolation of arbitrarily spaced data by moving least squares methods , 1986 .

[23]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[24]  R. Farwig Multivariate interpolation of scattered data by moving least squares methods , 1987 .

[25]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[26]  M. Buhmann Convergence of Univariate Quasi-Interpolation Using Multiquadrics , 1988 .

[27]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[28]  M. Buhmann Multivariate cardinal interpolation with radial-basis functions , 1990 .

[29]  Joseph D. Ward,et al.  Norms of Inverses for Matrices Associated with Scattered Data , 1991, Curves and Surfaces.

[30]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[31]  F. J. Narcowich,et al.  Norms of inverses and condition numbers for matrices associated with scattered data , 1991 .

[32]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[33]  R. Beatson,et al.  Fast evaluation of radial basis functions: I , 1992 .

[34]  K. Ball Eigenvalues of Euclidean distance matrices , 1992 .

[35]  W. Madych,et al.  Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .

[36]  吴宗敏 HERMITE—BIRKHOFF INTERPOLATION OF SCATTERED DATA BY RADIAL BASIS FUNCTIONS , 1992 .

[37]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[38]  J. Ward,et al.  On the sensitivity of radial basis interpolation to minimal data separation distance , 1992 .

[39]  K. Jetter,et al.  Estimating the Condition Number for Multivariate Interpolation Problems , 1992 .

[40]  F. J. Narcowich,et al.  Norm estimates for the inverse of a general class of scattered-data radial-function interpolation matrices , 1992 .

[41]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[42]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[43]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[44]  F. J. Narcowich,et al.  On Condition Numbers Associated with Radial-Function Interpolation , 1994 .

[45]  Nira Dyn,et al.  Image Warping by Radial Basis Functions: Application to Facial Expressions , 1994, CVGIP Graph. Model. Image Process..

[46]  F. J. Narcowich,et al.  Generalized Hermite interpolation via matrix-valued conditionally positive definite functions , 1994 .

[47]  B. Fornberg,et al.  A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.

[48]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[49]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[50]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[51]  V. Maz'ya,et al.  On approximate approximations using Gaussian kernels , 1996 .

[52]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[53]  T. Gutzmer Interpolation by positive definite functions on locally compact groups with application to SO (3) , 1996 .

[54]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[55]  M. Floater,et al.  Multistep scattered data interpolation using compactly supported radial basis functions , 1996 .

[56]  T. Sonar Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws , 1996 .

[57]  A. Iske,et al.  On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions , 1996 .

[58]  R. Beatson,et al.  Fast evaluation of radial basis functions : methods for two-dimensional polyharmonic splines , 1997 .

[59]  R. Beatson,et al.  A short course on fast multipole methods , 1997 .

[60]  Richard K. Beatson,et al.  Surface interpolation with radial basis functions for medical imaging , 1997, IEEE Transactions on Medical Imaging.

[61]  Bernhard Schölkopf,et al.  On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion , 1998, Algorithmica.

[62]  M. Buhmann Radial functions on compact support , 1998 .

[63]  Carsten Franke,et al.  Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..

[64]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[65]  W. Light,et al.  On Power Functions and Error Estimates for Radial Basis Function Interpolation , 1998 .

[66]  Richard K. Beatson,et al.  Fast Evaluation of Radial Basis Functions: Moment-Based Methods , 1998, SIAM J. Sci. Comput..

[67]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[68]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[69]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[70]  M. Floater,et al.  Thinning algorithms for scattered data interpolation , 1998 .

[71]  D. Levin Stable integration rules with scattered integration points , 1999 .

[72]  Richard K. Beatson,et al.  Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration , 1999, Adv. Comput. Math..

[73]  F. J. Narcowich,et al.  Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold , 1999 .

[74]  ProblemsPer Christian HansenDepartment The L-curve and its use in the numerical treatment of inverse problems , 2000 .

[75]  R. Beatson,et al.  Fast Evaluation of Radial Basis Functions: A Multivariate Momentary Evaluation Scheme , 2000 .

[76]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[77]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[78]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[79]  Jun-yong Noh,et al.  Animated deformations with radial basis functions , 2000, VRST '00.

[80]  R. Beatson,et al.  Polyharmonic Splines in Rd: Tools for Fast Evaluation , 2000 .

[81]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[82]  Martin D. Buhmann,et al.  A new class of radial basis functions with compact support , 2001, Math. Comput..

[83]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[84]  G. Fairweather,et al.  Orthogonal spline collocation methods for partial di erential equations , 2001 .

[85]  H. Wendland Local polynomial reproduction and moving least squares approximation , 2001 .

[86]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[87]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[88]  Richard K. Beatson,et al.  Fast Evaluation of Radial Basis Functions: Methods for Four-Dimensional Polyharmonic Splines , 2001, SIAM J. Math. Anal..

[89]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[90]  Holger Wendland,et al.  Approximation by positive definite kernels , 2002 .

[91]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[92]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[93]  S. Smale,et al.  ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .

[94]  Huafeng Liu,et al.  Meshfree particle method , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[95]  I. Babuska,et al.  Meshless and Generalized Finite Element Methods: A Survey of Some Major Results , 2003 .

[96]  B. Fornberg,et al.  Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .

[97]  Patrick Reuter,et al.  Point-based modelling and rendering using radial basis functions , 2003, GRAPHITE '03.

[98]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[99]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[100]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[101]  Y. Hon,et al.  A MESHLESS SCHEME FOR SOLVING INVERSE PROBLEMS OF LAPLACE EQUATION , 2003 .

[102]  Hans-Peter Seidel,et al.  A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions , 2003, 2003 Shape Modeling International..

[103]  Thomas C. Cecil,et al.  Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions , 2004 .

[104]  Niu Bao-guo Solving the Inverse Problem of Determining the Boundary of a Parabolic Equation by Radial Basis Method , 2004 .

[105]  Jichun Li,et al.  Application of radial basis meshless methods to direct and inverse biharmonic boundary value problems , 2004 .

[106]  Jichun Li,et al.  A radial basis meshless method for solving inverse boundary value problems , 2004 .

[107]  G. Fasshauer RBF Collocation Methods and Pseudospectral Methods , 2004 .

[108]  H. Matthies,et al.  Classification and Overview of Meshfree Methods , 2004 .

[109]  H. Wendland Solving large generalized interpolation problems efficiently , 2004 .

[110]  K. Mustapha,et al.  A Petrov–Galerkin method with quadrature for elliptic boundary value problems , 2004 .

[111]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[112]  S. Atluri The meshless method (MLPG) for domain & BIE discretizations , 2004 .

[113]  Holger Wendland,et al.  Approximate Interpolation with Applications to Selecting Smoothing Parameters , 2005, Numerische Mathematik.

[114]  A. Cheng,et al.  Direct solution of ill‐posed boundary value problems by radial basis function collocation method , 2005 .

[115]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[116]  Saburou Saitoh Applications of Reproducing Kernels to Best Approximations, Tikhonov Regularizations and Inverse Problems , 2005 .

[117]  A. Cheng,et al.  Direct Solution Of Certain Ill-posed BoundaryValue Problems By The Collocation Method , 2005 .

[118]  Holger Wendland,et al.  Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..

[119]  Bangti Jin,et al.  Boundary knot method for some inverse problems associated with the Helmholtz equation , 2005 .

[120]  Satya N. Atluri,et al.  The basis of meshless domain discretization: the meshless local Petrov–Galerkin (MLPG) method , 2005, Adv. Comput. Math..

[121]  Leif Kobbelt,et al.  Real‐Time Shape Editing using Radial Basis Functions , 2005, Comput. Graph. Forum.

[122]  Leif Kobbelt,et al.  Efficient spectral watermarking of large meshes with orthogonal basis functions , 2005, The Visual Computer.

[123]  R. Schaback Convergence Analysis Of Methods For SolvingGeneral Equations , 2005 .

[124]  Y. Hon,et al.  The method of fundamental solution for solving multidimensional inverse heat conduction problems , 2005 .

[125]  Nira Dyn,et al.  Adaptive Thinning for Terrain Modelling and Image Compression , 2005, Advances in Multiresolution for Geometric Modelling.

[126]  T. Poggio,et al.  The Mathematics of Learning: Dealing with Data , 2005, 2005 International Conference on Neural Networks and Brain.

[127]  Y. Hon,et al.  Reconstruction of numerical derivatives from scattered noisy data , 2005 .

[128]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[129]  Regine Ahrem,et al.  A Meshless Spatial Coupling Scheme for Large-scale Fluid-structure-interaction Problems , 2006 .

[130]  F. J. Narcowich,et al.  Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions , 2006 .

[131]  Holger Wendland,et al.  Kernel techniques: From machine learning to meshless methods , 2006, Acta Numerica.

[132]  Z. Nashed Applications of Wavelets and Kernel Methods in Inverse Problems , 2006 .

[133]  Roland Opfer,et al.  Multiscale kernels , 2006, Adv. Comput. Math..

[134]  Robert Schaback,et al.  Convergence of Unsymmetric Kernel-Based Meshless Collocation Methods , 2007, SIAM J. Numer. Anal..

[135]  P. Giesl Construction of Global Lyapunov Functions Using Radial Basis Functions , 2007 .

[136]  Holger Wendland,et al.  Meshless Collocation: Error Estimates with Application to Dynamical Systems , 2007, SIAM J. Numer. Anal..

[137]  Robert Schaback,et al.  Limit problems for interpolation by analytic radial basis functions , 2008 .

[138]  Holger Wendland,et al.  Approximating the basin of attraction of time-periodic ODEs by meshless collocation , 2009 .

[139]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .