Novel insight in the life cycle of Torymus sinensis, biocontrol agent of the chestnut gall wasp

[1]  A. D. Lees The Physiology of Diapause in Arthropods , 2016 .

[2]  Chris Nakas,et al.  Diapause termination of Rhagoletis cerasi pupae is regulated by local adaptation and phenotypic plasticity: escape in time through bet‐hedging strategies , 2014, Journal of evolutionary biology.

[3]  Ming-xing Lu,et al.  Diapause, signal and molecular characteristics of overwintering Chilo suppressalis (Insecta: Lepidoptera: Pyralidae) , 2013, Scientific Reports.

[4]  L. Meinke,et al.  Frequency and Distribution of Extended Diapause in Nebraska Populations of Diabrotica barberi (Coleoptera: Chrysomelidae) , 2013, Journal of economic entomology.

[5]  J. Candau,et al.  Temporal Population Genetics of Time Travelling Insects: A Long Term Study in a Seed-Specialized Wasp , 2013, PloS one.

[6]  Chris Nakas,et al.  Prolonged pupal dormancy is associated with significant fitness cost for adults of Rhagoletis cerasi (Diptera: Tephritidae). , 2012, Journal of insect physiology.

[7]  W. R. Cooper,et al.  A native and an introduced parasitoid utilize an exotic gall-maker host , 2011, BioControl.

[8]  J. Hearn,et al.  Revealing secret liaisons: DNA barcoding changes our understanding of food webs , 2010 .

[9]  V. N. Belozerov DIAPAUSE AND QUIESCENCE AS TWO MAIN KINDS OF DORMANCY AND THEIR SIGNIFICANCE IN LIFE CYCLES OF MITES AND TICKS (CHELICERATA: ARACHNIDA: ACARI). PART 2. PARASITIFORMES , 2009 .

[10]  F. Menu,et al.  Prolonged diapause: a trait increasing invasion speed? , 2008, Journal of theoretical biology.

[11]  V. N. Belozerov,et al.  DIAPAUSE AND QUIESCENCE AS TWO MAIN KINDS OF DORMANCY AND THEIR SIGNIFICANCE IN LIFE CYCLES OF MITES AND TICKS ( CHELICERATA : ARACHNIDA : ACARI ) . PART 1 . , 2008 .

[12]  A. Alma,et al.  Rearing, release and settlement prospect in Italy of Torymus sinensis, the biological control agent of the chestnut gall wasp Dryocosmus kuriphilus , 2008, BioControl.

[13]  W. R. Cooper,et al.  Community Associates of an Exotic Gallmaker, Dryocosmus kuriphilus (Hymenoptera: Cynipidae), in Eastern North America , 2007 .

[14]  Y. Matsuo Cost of prolonged diapause and its relationship to body size in a seed predator , 2006 .

[15]  L. Matzkin,et al.  GEOGRAPHIC VARIATION IN DIAPAUSE INCIDENCE, LIFE‐HISTORY TRAITS, AND CLIMATIC ADAPTATION IN DROSOPHILA MELANOGASTER , 2005, Evolution; international journal of organic evolution.

[16]  C. Bernstein,et al.  Prolonged diapause and the stability of host-parasitoid interactions. , 2004, Theoretical population biology.

[17]  R. Velarde,et al.  Influence of photoperiod on the overwintering induction of Galerucella calmariensis L , 2002, BioControl.

[18]  F. Menu,et al.  Strategies of emergence in the chestnut weevil Curculio elephas (Coleoptera: Curculionidae) , 1993, Oecologia.

[19]  F. Menu,et al.  Variability in diapause duration in the chestnut weevil: mixed ESS, genetic polymorphism or bet‐hedging? , 2003 .

[20]  S. Moriya,et al.  Oviposition of Torymus sinensis Kamijo (Hymenoptera : Torymidae under Natural Conditions) , 1999 .

[21]  H. Godfray,et al.  The evolution of diapause in a coupled host-parasitoid system. , 1998, Journal of theoretical biology.

[22]  J. V. Alphen,et al.  Variation in diapause and sex ratio in the parasitoid Asobara tabida , 1995 .

[23]  J. Bale,et al.  The ecology of insect overwintering , 1993 .

[24]  H. Danks Insect dormancy: an ecological perspective. , 1987 .

[25]  G. Waldbauer Phenological Adaptation and the Polymodal Emergence Patterns of Insects , 1978 .

[26]  H. Dingle Evolution of Insect Migration and Diapause , 1978, Proceedings in Life Sciences.

[27]  W. H. Day Theory and Practice of Biological Control , 1977 .

[28]  R. Doutt,et al.  6 – BIOLOGY AND HOST RELATIONSHIPS OF PARASITOIDS , 1976 .

[29]  C. B. Huffaker,et al.  Theory and practice of biological control , 1976 .