The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines

The number of receptors opening after glutamate release is critical for understanding the sources of noise and the dynamic range of synaptic transmission. We imaged [Ca2+] transients mediated by synaptically activated NMDA receptors (NMDA-Rs) in individual spines in rat brain slices. We show that Ca2+ influx through single NMDA-Rs can be reliably detected, allowing us to estimate the number of receptors opening after synaptic transmission. This number is small: at the peak of the synaptic response, less than one NMDA-R is open, on average. Therefore, stochastic interactions between transmitter and receptor contribute substantially to synaptic noise, and glutamate occupies a small fraction of receptors. The number of receptors opening did not scale with spine volume, and smaller spines experience larger [Ca2+] transients during synaptic transmission. Our measurements further demonstrate that optical recordings can be used to study single receptors in intact systems.

[1]  P. Andersen,et al.  A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea‐pig hippocampal slices in vitro , 1980, The Journal of physiology.

[2]  W. Singer,et al.  Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. , 1987, Science.

[3]  C. Stevens,et al.  NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus , 1989, Nature.

[4]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  P. Cullen,et al.  Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Westbrook,et al.  Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents , 1990, Nature.

[7]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[8]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  H. Robinson,et al.  Nonstationary fluctuation analysis and direct resolution of single channel currents at postsynaptic sites. , 1991, Biophysical journal.

[10]  Y. Sagara,et al.  Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. , 1991, The Journal of biological chemistry.

[11]  G. Westbrook,et al.  The time course of glutamate in the synaptic cleft. , 1992, Science.

[12]  C. Jahr,et al.  High probability opening of NMDA receptor channels by L-glutamate. , 1992, Science.

[13]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[14]  R. Silver,et al.  Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ , 1992, Nature.

[15]  K. Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  D Colquhoun,et al.  Activation of N‐methyl‐D‐aspartate receptors by L‐glutamate in cells dissociated from adult rat hippocampus. , 1992, The Journal of physiology.

[17]  B Sakmann,et al.  Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. , 1992, The Journal of physiology.

[18]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[19]  A. Konnerth,et al.  Fractional contribution of calcium to the cation current through glutamate receptor channels , 1993, Neuron.

[20]  C. Stevens,et al.  Calcium permeability of the N-methyl-D-aspartate receptor channel in hippocampal neurons in culture. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M E Greenberg,et al.  Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. , 1993, Science.

[22]  Christian Rosenmund,et al.  Nonuniform probability of glutamate release at a hippocampal synapse. , 1993, Science.

[23]  N. Spruston,et al.  Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. , 1995, The Journal of physiology.

[24]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[25]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[26]  K. Harris,et al.  Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses , 1995, Neuropharmacology.

[27]  C. Jahr,et al.  Kinetics of NMDA Channel Opening , 1996, The Journal of Neuroscience.

[28]  R. Nicoll,et al.  Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus , 1996, Neuron.

[29]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[30]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[31]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[32]  A Konnerth,et al.  Release and sequestration of calcium by ryanodine‐sensitive stores in rat hippocampal neurones , 1997, The Journal of physiology.

[33]  Ann Marie Craig,et al.  Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons , 1997, Neuron.

[34]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[35]  D. Colquhoun,et al.  Single‐channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors , 1998, The Journal of physiology.

[36]  R. Nicoll,et al.  Development of excitatory circuitry in the hippocampus. , 1998, Journal of neurophysiology.

[37]  R. Nicoll,et al.  Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[39]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[40]  Roberto Malinow,et al.  Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated , 1999, Nature.

[41]  K. Svoboda,et al.  Two-photon imaging in living brain slices. , 1999, Methods.

[42]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[43]  R. Tsien,et al.  Variability of Neurotransmitter Concentration and Nonsaturation of Postsynaptic AMPA Receptors at Synapses in Hippocampal Cultures and Slices , 1999, Neuron.

[44]  M. Umemiya,et al.  Behaviour of NMDA and AMPA receptor‐mediated miniature EPSCs at rat cortical neuron synapses identified by calcium imaging , 1999, The Journal of physiology.

[45]  J. Partridge,et al.  Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses , 1999, Nature Neuroscience.

[46]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[47]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[48]  C F Stevens,et al.  Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[50]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[51]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[52]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[53]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[54]  C. Jahr,et al.  Multivesicular Release at Climbing Fiber-Purkinje Cell Synapses , 2001, Neuron.

[55]  J. Magee,et al.  Distance-Dependent Increase in AMPA Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal Neurons , 2001, The Journal of Neuroscience.

[56]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[57]  Terrence J Sejnowski,et al.  A Monte Carlo model reveals independent signaling at central glutamatergic synapses. , 2002, Biophysical journal.

[58]  Philippe Isope,et al.  Involvement of Presynaptic N-Methyl-D-Aspartate Receptors in Cerebellar Long-Term Depression , 2002, Neuron.

[59]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[60]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[61]  T. Sejnowski,et al.  Independent Sources of Quantal Variability at Single Glutamatergic Synapses , 2003, The Journal of Neuroscience.

[62]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[63]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[64]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.