Adaptive wavelet collocation methods for image segmentation using TV–Allen–Cahn type models

An adaptive wavelet-based method is proposed for solving TV(total variation)–Allen–Cahn type models for multi-phase image segmentation. The adaptive algorithm integrates (i) grid adaptation based on a threshold of the sparse wavelet representation of the locally-structured solution; and (ii) effective finite difference on irregular stencils. The compactly supported interpolating-type wavelets enjoy very fast wavelet transforms, and act as a piecewise constant function filter. These lead to fairly sparse computational grids, and relax the stiffness of the nonlinear PDEs. Equipped with this algorithm, the proposed sharp interface model becomes very effective for multi-phase image segmentation. This method is also applied to image restoration and similar advantages are observed.

[1]  Xue-Cheng Tai,et al.  A binary level set model and some applications to Mumford-Shah image segmentation , 2006, IEEE Transactions on Image Processing.

[2]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[3]  Yuesheng Xu,et al.  Adaptive Wavelet Methods for Elliptic Operator Equations with Nonlinear Terms , 2003, Adv. Comput. Math..

[4]  C. Micchelli,et al.  Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .

[5]  Xue-Cheng Tai,et al.  A variant of the level set method and applications to image segmentation , 2006, Math. Comput..

[6]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[7]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[8]  Xue-Cheng Tai,et al.  Fast Implementation of Piecewise Constant Level Set Methods , 2007 .

[9]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[10]  Xuecheng Tai,et al.  A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations , 1992 .

[11]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[12]  Siam J. Sci,et al.  A WAVELET-OPTIMIZED, VERY HIGH ORDER ADAPTIVE GRID AND ORDER NUMERICAL METHOD , 1998 .

[13]  Michael Yu Wang,et al.  Design of piezoelectric actuators using a multiphase level set method of piecewise constants , 2009, J. Comput. Phys..

[14]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[15]  Oleg V. Vasilyev,et al.  An Adaptive Wavelet Collocation Method for Fluid-Structure Interaction at High Reynolds Numbers , 2005, SIAM J. Sci. Comput..

[16]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[17]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[18]  A Bultheel,et al.  Book review 'Handbook of numerical analysis, volume I. (Finite difference methods - part 1; Solution of equations in R^n - part 1) P.G. Ciarlet and J.L. Lions (eds.)' , 1990 .

[19]  Xue-Cheng Tai,et al.  Graph Cut Optimization for the Piecewise Constant Level Set Method Applied to Multiphase Image Segmentation , 2009, SSVM.

[20]  G. Marchuk Splitting and alternating direction methods , 1990 .

[21]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[22]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[23]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[24]  Ke Chen,et al.  Nonlinear Multilevel Schemes for Solving the Total Variation Image Minimization Problem , 2006 .

[25]  J. Tinsley Oden,et al.  A Posteriori Error Estimation , 2002 .

[26]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[27]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[28]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[29]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[30]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[31]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[32]  Xuecheng Tai,et al.  A parallel splitting up method and its application to Navier-Stokes equations , 1991 .

[33]  Wei Cai,et al.  An Adaptive Spline Wavelet ADI (SW-ADI) Method for Two-Dimensional Reaction-Diffusion Equations , 1998 .

[34]  Xue-Cheng Tai,et al.  Image Segmentation Using Some Piecewise Constant Level Set Methods with MBO Type of Projection , 2007, International Journal of Computer Vision.

[35]  Tony F. Chan,et al.  ENO-Wavelet Transforms for Piecewise Smooth Functions , 2002, SIAM J. Numer. Anal..

[36]  Tony F. Chan,et al.  Total Variation Wavelet Thresholding , 2007, J. Sci. Comput..

[37]  Tony F. Chan,et al.  Total variation improved wavelet thresholding in image compression , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[38]  Jianzhong Wang,et al.  Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs , 1996 .

[39]  Mats Holmström,et al.  Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..

[40]  Bradley K. Alpert,et al.  Adaptive solution of partial di erential equations in multiwavelet bases , 2002 .

[41]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[42]  Panagiotis Tsiotras,et al.  A Hierarchical Multiresolution Adaptive Mesh Refinement for the Solution of Evolution PDEs , 2008, SIAM J. Sci. Comput..

[43]  Jacques Liandrat,et al.  Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation , 1990 .

[44]  Xuecheng Tai,et al.  Piecewise Constant Level Set Methods for Multiphase Motion , 2005 .

[45]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[46]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[47]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[48]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[49]  Jie Shen,et al.  An efficient moving mesh spectral method for the phase-field model of two-phase flows , 2009, J. Comput. Phys..

[50]  Zi-Kui Liu,et al.  Spectral implementation of an adaptive moving mesh method for phase-field equations , 2006, J. Comput. Phys..

[51]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[52]  Johan Waldén,et al.  Adaptive Wavelet Methods for Hyperbolic PDEs , 1998, J. Sci. Comput..

[53]  Gregory Beylkin,et al.  On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases , 1997 .

[54]  Oleg V. Vasilyev,et al.  Second-generation wavelet collocation method for the solution of partial differential equations , 2000 .

[55]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[56]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[57]  Jinchao Xu,et al.  Galerkin-wavelet methods for two-point boundary value problems , 1992 .

[58]  O. Vasilyev,et al.  A Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain , 1996 .

[59]  Yuesheng Xu,et al.  A construction of interpolating wavelets on invariant sets , 1999, Math. Comput..

[60]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[61]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.