A coupled arbitrary Lagrangian-Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants

A finite element scheme to compute the dynamics of insoluble surfactant on a deforming free surface is presented. The free surface is tracked by the arbitrary Lagrangian-Eulerian (ALE) approach, whereas the surfactant concentration transport equation is approximated in a Lagrangian manner. Since boundary resolved moving meshes are used in the ALE approach, the surface tension, which may be a linear or nonlinear function of surfactant concentration (equation of state), and the Marangoni forces can be incorporated directly into the numerical scheme. Further, the Laplace-Beltrami operator technique, which reduces one order of differentiation associated with the curvature, is used to handle the curvature approximation. A number of 3D-axisymmetric computations are performed to validate the proposed numerical scheme. An excellent surfactant mass conservation without any additional mass correction scheme is obtained. The differences in using a linear and a nonlinear equation of state, respectively, on the flow dynamics of a freely oscillating droplet are demonstrated.

[1]  T. M. Tsai,et al.  Tip streaming from a drop in the presence of surfactants. , 2001, Physical review letters.

[2]  Stanley Osher,et al.  Level Set Methods , 2003 .

[3]  C. Pozrikidis,et al.  A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop , 2004 .

[4]  J. Li,et al.  Numerical simulation of moving contact line problems using a volume-of-fluid method , 2001 .

[5]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[6]  Sashikumaar Ganesan,et al.  COMPUTATIONS OF FLOWS WITH INTERFACES USING ARBITRARY LAGRANGIAN EULERIAN METHOD , 2006 .

[7]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[8]  Han E. H. Meijer,et al.  Droplet behavior in the presence of insoluble surfactants , 2004 .

[9]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[10]  J. Sethian,et al.  Transport and diffusion of material quantities on propagating interfaces via level set methods , 2003 .

[11]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[12]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[13]  Ng Niels Deen,et al.  Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method , 2005 .

[14]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[15]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[16]  A. Reusken,et al.  A finite element based level set method for two-phase incompressible flows , 2006 .

[17]  Alper Yilmaz,et al.  Level Set Methods , 2007, Wiley Encyclopedia of Computer Science and Engineering.

[18]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[19]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[20]  David S. Rumschitzki,et al.  On the surfactant mass balance at a deforming fluid interface , 1996 .

[21]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[22]  P. Nithiarasu An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic‐based split (CBS) scheme , 2005 .

[23]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[24]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[25]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[26]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[27]  H. Stone A simple derivation of the time‐dependent convective‐diffusion equation for surfactant transport along a deforming interface , 1990 .

[28]  Sashikumaar Ganesan,et al.  An accurate finite element scheme with moving meshes for computing 3D‐axisymmetric interface flows , 2008 .

[29]  Vittorio Cristini,et al.  A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio , 2002 .

[30]  Sashikumaar Ganesan,et al.  Modelling and simulation of moving contact line problems with wetting effects , 2009 .

[31]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[32]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[33]  Xiaofan Li,et al.  The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow , 1997, Journal of Fluid Mechanics.

[34]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[35]  F. Durst,et al.  Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows , 2006 .

[36]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[37]  Héctor D. Ceniceros,et al.  The effects of surfactants on the formation and evolution of capillary waves , 2003 .

[38]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[39]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[40]  Dimos Poulikakos,et al.  Modeling of the deformation of a liquid droplet impinging upon a flat surface , 1993 .

[41]  Dimos Poulikakos,et al.  Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling , 1995 .

[42]  Stefan Hildebrandt,et al.  Partial Differential Equations and Calculus of Variations , 1989 .

[43]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[44]  S. Turek Efficient solvers for incompressible flow problems: An algorithmic approach . . , 1998 .

[45]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[46]  H. J.,et al.  Hydrodynamics , 1924, Nature.