Convex equipartitions via Equivariant Obstruction Theory

We describe a regular cell complex model for the configuration space F(ℝd, n). Based on this, we use Equivariant Obstruction Theory to prove the prime power case of the conjecture by Nandakumar and Ramana Rao that every polygon can be partitioned into n convex parts of equal area and perimeter.

[1]  H. Minkowski Volumen und Oberfläche , 1903 .

[2]  Franz Aurenhammer,et al.  Minkowski-type theorems and least-squares partitioning , 1992, SCG '92.

[3]  C. Villani Topics in Optimal Transportation , 2003 .

[4]  Bernd Sturmfels,et al.  Oriented Matroids: Notation , 1999 .

[5]  R. Karasev Equipartition of several measures , 2010, 1011.4762.

[6]  Vladimir I. Arnold The cohomology ring of the colored braid group , 1969 .

[7]  P. Deligne,et al.  Les immeubles des groupes de tresses généralisés , 1972 .

[8]  Pavle V. M. Blagojevic,et al.  Using equivariant obstruction theory in combinatorial geometry , 2006 .

[9]  Franz Aurenhammer,et al.  A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..

[10]  Richard A. Hepworth,et al.  Configuration Spaces and Θ N , 2012 .

[11]  R.Nandakumar,et al.  Fair partitions of polygons: An elementary introduction , 2008, 0812.2241.

[12]  I. Bárány,et al.  Equipartitioning by a convex 3-fan , 2010 .

[13]  J. C. Moore,et al.  Homology theory for locally compact spaces. , 1960 .

[14]  k-Regular Mappings of 2 n -Dimensional Euclidean Space , 1979 .

[15]  Mario Salvetti,et al.  Topology of the complement of real hyperplanes in ℂN , 1987 .

[16]  V. A. Vasil'ev,et al.  Braid group cohomologies and algorithm complexity , 1988 .

[17]  G. Ziegler Lectures on Polytopes , 1994 .

[18]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[19]  Dirk Siersma,et al.  Power diagrams and their applications , 2005 .

[20]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[21]  GCD of truncated rows in Pascal's triangle. , 2004 .

[22]  G. Ziegler,et al.  Combinatorial stratification of complex arrangements , 1992 .

[23]  B. Aronov,et al.  Convex Equipartitions of volume and surface area , 2010, 1010.4611.

[24]  J. Connett,et al.  A coincidence theorem related to the Borsuk-Ulam theorem , 1974 .

[25]  Günter Rote,et al.  Optimally solving a transportation problem using Voronoi diagrams , 2012, Comput. Geom..

[26]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[27]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[28]  M. Lazard Sur les groupes de Lie formels à un paramètre , 1955 .

[29]  B. Sturmfels Oriented Matroids , 1993 .

[30]  D. Handel,et al.  $k$-regular embeddings of the plane , 1978 .

[31]  V. Prasolov Elements of Homology Theory , 2007 .

[32]  C. Concini,et al.  Cohomology of coxeter groups and Artin groups , 2000 .

[33]  L. Neuwirth,et al.  The Braid Groups. , 1962 .

[34]  J. Matousek,et al.  Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .

[35]  R NANDAKUMAR,et al.  Fair partitions of polygons: An elementary introduction , 2012 .

[36]  Vladimir I. Arnold,et al.  The cohomology ring of the colored braid group , 1969 .

[37]  Chad Giusti,et al.  Fox-Neuwirth cell structures and the cohomology of symmetric groups , 2011, 1110.4137.

[38]  S. Novikov Homotopy properties of Thom complexes , 2007 .

[39]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[40]  G. Ziegler,et al.  Equivariant topology of configuration spaces , 2012, 1207.2852.

[41]  Anders,et al.  Subspace Arrangements , 2012 .

[42]  V. Vassiliev Complements of Discriminants of Smooth Maps: Topology and Applications , 1992 .

[43]  H. Minkowski Volumen und Oberfläche , 1903 .

[44]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[45]  Secant varieties and successive minima , 2001, math/0110254.

[46]  D. B. Fuks Cohomologies of the group COS mod 2 , 1970 .