Convex equipartitions via Equivariant Obstruction Theory
暂无分享,去创建一个
[1] H. Minkowski. Volumen und Oberfläche , 1903 .
[2] Franz Aurenhammer,et al. Minkowski-type theorems and least-squares partitioning , 1992, SCG '92.
[3] C. Villani. Topics in Optimal Transportation , 2003 .
[4] Bernd Sturmfels,et al. Oriented Matroids: Notation , 1999 .
[5] R. Karasev. Equipartition of several measures , 2010, 1011.4762.
[6] Vladimir I. Arnold. The cohomology ring of the colored braid group , 1969 .
[7] P. Deligne,et al. Les immeubles des groupes de tresses généralisés , 1972 .
[8] Pavle V. M. Blagojevic,et al. Using equivariant obstruction theory in combinatorial geometry , 2006 .
[9] Franz Aurenhammer,et al. A criterion for the affine equivalence of cell complexes inRd and convex polyhedra inRd+1 , 1987, Discret. Comput. Geom..
[10] Richard A. Hepworth,et al. Configuration Spaces and Θ N , 2012 .
[11] R.Nandakumar,et al. Fair partitions of polygons: An elementary introduction , 2008, 0812.2241.
[12] I. Bárány,et al. Equipartitioning by a convex 3-fan , 2010 .
[13] J. C. Moore,et al. Homology theory for locally compact spaces. , 1960 .
[14] k-Regular Mappings of 2 n -Dimensional Euclidean Space , 1979 .
[15] Mario Salvetti,et al. Topology of the complement of real hyperplanes in ℂN , 1987 .
[16] V. A. Vasil'ev,et al. Braid group cohomologies and algorithm complexity , 1988 .
[17] G. Ziegler. Lectures on Polytopes , 1994 .
[18] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[19] Dirk Siersma,et al. Power diagrams and their applications , 2005 .
[20] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[21] GCD of truncated rows in Pascal's triangle. , 2004 .
[22] G. Ziegler,et al. Combinatorial stratification of complex arrangements , 1992 .
[23] B. Aronov,et al. Convex Equipartitions of volume and surface area , 2010, 1010.4611.
[24] J. Connett,et al. A coincidence theorem related to the Borsuk-Ulam theorem , 1974 .
[25] Günter Rote,et al. Optimally solving a transportation problem using Voronoi diagrams , 2012, Comput. Geom..
[26] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[27] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[28] M. Lazard. Sur les groupes de Lie formels à un paramètre , 1955 .
[29] B. Sturmfels. Oriented Matroids , 1993 .
[30] D. Handel,et al. $k$-regular embeddings of the plane , 1978 .
[31] V. Prasolov. Elements of Homology Theory , 2007 .
[32] C. Concini,et al. Cohomology of coxeter groups and Artin groups , 2000 .
[33] L. Neuwirth,et al. The Braid Groups. , 1962 .
[34] J. Matousek,et al. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .
[35] R NANDAKUMAR,et al. Fair partitions of polygons: An elementary introduction , 2012 .
[36] Vladimir I. Arnold,et al. The cohomology ring of the colored braid group , 1969 .
[37] Chad Giusti,et al. Fox-Neuwirth cell structures and the cohomology of symmetric groups , 2011, 1110.4137.
[38] S. Novikov. Homotopy properties of Thom complexes , 2007 .
[39] Franz Aurenhammer,et al. Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.
[40] G. Ziegler,et al. Equivariant topology of configuration spaces , 2012, 1207.2852.
[41] Anders,et al. Subspace Arrangements , 2012 .
[42] V. Vassiliev. Complements of Discriminants of Smooth Maps: Topology and Applications , 1992 .
[43] H. Minkowski. Volumen und Oberfläche , 1903 .
[44] M. Goresky,et al. Stratified Morse theory , 1988 .
[45] Secant varieties and successive minima , 2001, math/0110254.
[46] D. B. Fuks. Cohomologies of the group COS mod 2 , 1970 .