Geometric morphometrics and phylogeny

This paper reviews some of the important properties of geometric morphometric shape variables and discusses the advantages and limitations of the use of such data in studies of phylogeny. A method for fitting morphometric data to a phylogeny (i.e., estimating ancestral states of the shape variables) is presented using the squared-change parsimony criterion for estimation. These results are then used to illustrate shape change along a phylogeny as a deformation of the shape of any other node on the tree (e.g., the estimated root of the tree). In addition, a method to estimate the digitized image of an ancestor is given that uses averages of unwarped images. An example dataset with 18 wing landmarks for 11 species of mosquitoes is used to illustrate the methods.

[1]  R. Huey,et al.  PHYLOGENETIC STUDIES OF COADAPTATION: PREFERRED TEMPERATURES VERSUS OPTIMAL PERFORMANCE TEMPERATURES OF LIZARDS , 1987, Evolution; international journal of organic evolution.

[2]  F J Rohlf,et al.  On applications of geometric morphometrics to studies of ontogeny and phylogeny. , 1998, Systematic biology.

[3]  F. Bookstein,et al.  The ontogenetic complexity of developmental constraints , 1993 .

[4]  M. Zelditch,et al.  Allometry and developmental integration of body growth in a piranha, Pygocentrus nattereri (Teleostei: Ostariophysi) , 1995, Journal of morphology.

[5]  Miriam Leah Zelditch,et al.  MORPHOMETRICS, HOMOLOGY, AND PHYLOGENETICS: QUANTIFIED CHARACTERS AS SYNAPOMORPHIES , 1995 .

[6]  F. James Rohlf On the use of shape spaces to compare morphometric methods , 2000 .

[7]  J T Richtsmeier,et al.  A COORDINATE‐FREE APPROACH TO THE ANALYSIS OF GROWTH PATTERNS: MODELS AND THEORETICAL CONSIDERATIONS , 1993, Biological reviews of the Cambridge Philosophical Society.

[8]  M. Zelditch,et al.  On Applications of Geometric Morphometrics to Studies of Ontogeny and Phylogeny: A Reply to Rohlf , 1998 .

[9]  D. L. Swiderski,et al.  MORPHOLOGICAL EVOLUTION OF THE SCAPULA IN TREE SQUIRRELS, CHIPMUNKS, AND GROUND SQUIRRELS (SCIURIDAE): AN ANALYSIS USING THIN‐PLATE SPLINES , 1993, Evolution; international journal of organic evolution.

[10]  Rikard Berthilsson,et al.  A Statistical Theory of Shape , 1998, SSPR/SPR.

[11]  C J Valeri,et al.  Preoperative morphology and development in sagittal synostosis. , 1998, Journal of craniofacial genetics and developmental biology.

[12]  J. Farris Methods for Computing Wagner Trees , 1970 .

[13]  A. Rodrigo,et al.  Estimating the Ancestral States of a Continuous-Valued Character Using Squared-Change Parsimony: An Analytical Solution , 1994 .

[14]  J. Felsenstein Phylogenies and quantitative characters , 1988 .

[15]  Subhash R. Lele,et al.  A new test for shape differences when variance–covariance matrices are unequal , 1996 .

[16]  Ames,et al.  GEOMETRIC INTERPRETATIONS OF COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES , 2000 .

[17]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[18]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[19]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[20]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[21]  F J Rohlf,et al.  Statistical power comparisons among alternative morphometric methods. , 2000, American journal of physical anthropology.

[22]  F J Rohlf,et al.  COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES: GEOMETRIC INTERPRETATIONS , 2001, Evolution; international journal of organic evolution.

[23]  Fred L. Bookstein,et al.  Standard Formula for the Uniform Shape Component in Landmark Data , 1996 .

[24]  S. Lele,et al.  Euclidean distance matrix analysis: a coordinate-free approach for comparing biological shapes using landmark data. , 1991, American journal of physical anthropology.

[25]  F. Rohlf Shape Statistics: Procrustes Superimpositions and Tangent Spaces , 1999 .

[26]  F L Bookstein,et al.  Biometrics, biomathematics and the morphometric synthesis. , 1996, Bulletin of mathematical biology.

[27]  Ichael,et al.  Partial Warps, Phylogeny, and Ontogeny: A Comment on Fink and Zelditch (1995) , 2001 .

[28]  I. Kitching,et al.  Phylogeny and classification of the Culicidae (Diptera) , 1998 .

[29]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[30]  Dean C. Adams,et al.  Methods for shape analysis of landmark data from articulated structures , 1999 .

[31]  Fred L. Bookstein Visualizing Group Differences in Outline Shape: Methods from Biometrics of Landmark Points , 1996, VBC.

[32]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[33]  John C. Gower,et al.  Statistical methods of comparing different multivariate analyses of the same data , 1971 .

[34]  J. Kent The Complex Bingham Distribution and Shape Analysis , 1994 .

[35]  Stanley J. Carpenter,et al.  Mosquitoes of North America (north of Mexico) , 1955 .

[36]  Miriam Leah Zelditch,et al.  ONTOGENY OF INTEGRATED SKULL GROWTH IN THE COTTON RAT SIGMODON FULVIVENTER , 1992, Evolution; international journal of organic evolution.

[37]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[38]  F. Rohlf,et al.  NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, version 2.1: Owner manual , 1992 .

[39]  F. Rohlf,et al.  A revolution morphometrics. , 1993, Trends in ecology & evolution.

[40]  E. Martins Estimation of ancestral states of continuous characters: A computer simulation study , 1999 .

[41]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[42]  W. Maddison Squared-Change Parsimony Reconstructions of Ancestral States for Continuous-Valued Characters on a Phylogenetic Tree , 1991 .

[43]  M. Zelditch,et al.  Phylogenetic Analysis of Ontogenetic Shape Transformations: A Reassessment of the Piranha Genus Pygocentrus (Teleostei) , 1995 .

[44]  F. Rohlf,et al.  Morphometric Spaces, Shape Components and the Effects of Linear Transformations , 1996 .

[45]  L. F. Marcus,et al.  Advances in Morphometrics , 1996, NATO ASI Series.

[46]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[47]  R. Greenberg Biometry , 1969, The Yale Journal of Biology and Medicine.

[48]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[49]  Joan T. Richtsmeier,et al.  Advances in Anthropological Morphometrics , 1992 .

[50]  J. Gower Generalized procrustes analysis , 1975 .