Tuning & simplifying heuristical optimization

This thesis is about the tuning and simplification of black-box (direct-search, derivative-free) optimization methods, which by definition do not use gradient information to guide their search for an optimum but merely need a fitness (cost, error, objective) measure for each candidate solution to the optimization problem. Such optimization methods often have parameters that infuence their behaviour and efficacy. A Meta-Optimization technique is presented here for tuning the behavioural parameters of an optimization method by employing an additional layer of optimization. This is used in a number of experiments on two popular optimization methods, Differential Evolution and Particle Swarm Optimization, and unveils the true performance capabilities of an optimizer in different usage scenarios. It is found that state-of-the-art optimizer variants with their supposedly adaptive behavioural parameters do not have a general and consistent performance advantage but are outperformed in several cases by simplified optimizers, if only the behavioural parameters are tuned properly.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[3]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[4]  Janez Brest,et al.  Performance comparison of self-adaptive and adaptive differential evolution algorithms , 2007, Soft Comput..

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  John R. Koza,et al.  Hidden Order: How Adaptation Builds Complexity. , 1995, Artificial Life.

[7]  M. Sarma On the convergence of the Baba and Dorea random optimization methods , 1990 .

[8]  Peter Ross,et al.  Co-evolution of Operator Settings in Genetic Algorithms , 1996, Evolutionary Computing, AISB Workshop.

[9]  A. Carlisle,et al.  Tracking changing extrema with adaptive particle swarm optimizer , 2002, Proceedings of the 5th Biannual World Automation Congress.

[10]  H. Goldstein,et al.  Emergence: the connected lives of ants, brains, cities, and software [Book Review] , 2001, IEEE Spectrum.

[11]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[12]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[13]  Jacques Riget,et al.  A Diversity-Guided Particle Swarm Optimizer - the ARPSO , 2002 .

[14]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[15]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[16]  Abraham Charnes,et al.  Necessary and Sufficient Conditions for a Pareto Optimum in Convex Programming , 1977 .

[17]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[18]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[20]  Chen-Chien James Hsu,et al.  Digital redesign of uncertain interval systems based on extremal gain/phase margins via a hybrid particle swarm optimizer , 2010, Appl. Soft Comput..

[21]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[22]  M. M. Ali,et al.  Differential evolution algorithms using hybrid mutation , 2007, Comput. Optim. Appl..

[23]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[24]  Xia Li,et al.  A novel particle swarm optimizer hybridized with extremal optimization , 2010, Appl. Soft Comput..

[25]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[26]  Mohammed El-Abd,et al.  Discrete cooperative particle swarm optimization for FPGA placement , 2010, Appl. Soft Comput..

[27]  Thomas Bartz-Beielstein,et al.  Analysis of Particle Swarm Optimization Using Computational Statistics , 2004 .

[28]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[29]  N. Baba Convergence of a random optimization method for constrained optimization problems , 1981 .

[30]  Stephan K. Chalup,et al.  A study on hill climbing algorithms for neural network training , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[31]  Olivier François,et al.  Design of evolutionary algorithms-A statistical perspective , 2001, IEEE Trans. Evol. Comput..

[32]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[33]  Philip Ball,et al.  The Self-Made Tapestry: Pattern Formation in Nature , 1999 .

[34]  Peter Wai-Ming Tsang,et al.  Enhanced affine invariant matching of broken boundaries based on particle swarm optimization and the dynamic migrant principle , 2010, Appl. Soft Comput..

[35]  J. Kiefer,et al.  Sequential minimax search for a maximum , 1953 .

[36]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[37]  K. Mahadevan,et al.  Comprehensive learning particle swarm optimization for reactive power dispatch , 2010, Appl. Soft Comput..

[38]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[39]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[40]  Thomas Bäck,et al.  Parallel Optimization of Evolutionary Algorithms , 1994, PPSN.

[41]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[42]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[43]  Jürgen Schmidhuber,et al.  Gödel Machines: Towards a Technical Justification of Consciousness , 2005, Adaptive Agents and Multi-Agent Systems.

[44]  Magnus Rattray,et al.  Noisy Fitness Evaluation in Genetic Algorithms and the Dynamics of Learning , 1996, FOGA.

[45]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[46]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[47]  A. J. Keane,et al.  Genetic algorithm optimization of multi-peak problems: studies in convergence and robustness , 1995, Artif. Intell. Eng..

[48]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[49]  Thiemo Krink,et al.  The LifeCycle Model: Combining Particle Swarm Optimisation, Genetic Algorithms and HillClimbers , 2002, PPSN.

[50]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[51]  Tim Blackwell,et al.  A simplified recombinant PSO , 2008 .

[52]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[53]  Xinchao Zhao,et al.  A perturbed particle swarm algorithm for numerical optimization , 2010, Appl. Soft Comput..

[54]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[55]  Mauro Birattari,et al.  The problem of tuning metaheuristics: as seen from the machine learning perspective , 2004 .

[56]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[57]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[58]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[59]  Benjamin W. Wah,et al.  Scheduling of Genetic Algorithms in a Noisy Environment , 1994, Evolutionary Computation.

[60]  Godfried T. Toussaint,et al.  Bibliography on estimation of misclassification , 1974, IEEE Trans. Inf. Theory.

[61]  Taher Niknam,et al.  An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis , 2010, Appl. Soft Comput..

[62]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[63]  T. H. I. Jaakola,et al.  Optimization by direct search and systematic reduction of the size of search region , 1973 .

[64]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[65]  Grzegorz Ziomek,et al.  Random search optimization approach for highly multi-modal nonlinear problems , 2005, Adv. Eng. Softw..

[66]  Y. Pang Expected number of steps of a random optimization method , 1985 .

[67]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[68]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[69]  Radiocommunications,et al.  OPTIMIZATION OF WIRELESS COMMUNICATIONS APPLICATIONS USING DIFFERENTIAL EVOLUTION , 2007 .

[70]  Conor Ryan,et al.  Grammatical evolution , 2007, GECCO '07.

[71]  A. E. Eiben,et al.  A method for parameter calibration and relevance estimation in evolutionary algorithms , 2006, GECCO '06.

[72]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[73]  J. Miller Numerical Analysis , 1966, Nature.

[74]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[75]  Graham Kendall,et al.  Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one , 2007, GECCO '07.

[76]  A. E. Eiben,et al.  Comparing parameter tuning methods for evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[77]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[78]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[79]  J. Fitzpatrick,et al.  Genetic Algorithms in Noisy Environments , 2005, Machine Learning.

[80]  A. E. Eiben,et al.  Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.

[81]  Arnold Neumaier,et al.  SNOBFIT -- Stable Noisy Optimization by Branch and Fit , 2008, TOMS.

[82]  Rein Luus,et al.  Use of line search in the Luus-Jaakola optimization procedure , 2007 .

[83]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[84]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[85]  Günther F. Schrack,et al.  Optimized relative step size random searches , 1976, Math. Program..

[86]  Kenneth Steiglitz,et al.  Randomized Pattern Search , 1972, IEEE Transactions on Computers.

[87]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[88]  G. Gopalakrishnan Nair,et al.  On the convergence of the LJ search method , 1979 .

[89]  D. Kudenko,et al.  Sequential Experiment Designs for Screening and Tuning Parameters of Stochastic Heuristics , 2006 .

[90]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[91]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[92]  Rainer Storn,et al.  Differential Evolution Research – Trends and Open Questions , 2008 .

[93]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[94]  Maurizio Marchese,et al.  A modified particle swarm optimization-based dynamic recurrent neural network for identifying and controlling nonlinear systems , 2007 .

[95]  T. Krink,et al.  Extending particle swarm optimisers with self-organized criticality , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[96]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[97]  Gisbert Schneider,et al.  Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training , 2006, BMC Bioinformatics.

[98]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[99]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[100]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[101]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[102]  Riccardo Poli,et al.  Discovering efficient learning rules for feedforward neural networks using genetic programming , 2003 .

[103]  Samy Bengio,et al.  Use of genetic programming for the search of a new learning rule for neural networks , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[104]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[105]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[106]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[107]  Gary B. Fogel,et al.  Noisy optimization problems - a particular challenge for differential evolution? , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[108]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[109]  Andrew J. Chipperfield,et al.  Simplifying Particle Swarm Optimization , 2010, Appl. Soft Comput..

[110]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[111]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[112]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[113]  Alfonso Ortega,et al.  Christiansen Grammar Evolution: Grammatical Evolution With Semantics , 2007, IEEE Transactions on Evolutionary Computation.

[114]  Huang Hou-kuan Self-adapting control parameters in differential evolution , 2012 .

[115]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[116]  Steven Johnson,et al.  Emergence: The Connected Lives of Ants, Brains, Cities, and Software , 2001 .

[117]  Riccardo Poli,et al.  Extending Particle Swarm Optimisation via Genetic Programming , 2005, EuroGP.

[118]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[119]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.

[120]  Conor Ryan,et al.  Grammatical Evolution by Grammatical Evolution: The Evolution of Grammar and Genetic Code , 2004, EuroGP.

[121]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[122]  Robert E. Mercer,et al.  ADAPTIVE SEARCH USING A REPRODUCTIVE META‐PLAN , 1978 .

[123]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[124]  Georg Ch. Pflug,et al.  Simulated Annealing for noisy cost functions , 1996, J. Glob. Optim..

[125]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[126]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[127]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[128]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[129]  Yong Lu,et al.  A robust stochastic genetic algorithm (StGA) for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.