Recognizing and Simulating Neuronal Spike Patterns with Hidden Markov Models

[1]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[2]  L. Rabiner,et al.  The acoustics, speech, and signal processing society - A historical perspective , 1984, IEEE ASSP Magazine.

[3]  V Krishnamurthy,et al.  Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  J. Krüger,et al.  Recognizing the visual stimulus from neuronal discharges , 1991, Trends in Neurosciences.

[5]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[6]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[7]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[8]  J. Rice,et al.  Maximum likelihood estimation and identification directly from single-channel recordings , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[10]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[11]  J. Krüger,et al.  Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers. , 1988, Journal of neurophysiology.