Large-scale ab initio simulations based on systematically improvable atomic basis

We present a first-principles computer code package (ABACUS) that is based on density functional theory and numerical atomic basis sets. Theoretical foundations and numerical techniques used in the code are described, with focus on the accuracy and transferability of the hierarchical atomic basis sets as generated using a scheme proposed by Chen, Guo and He [J. Phys.:Condens. Matter \textbf{22}, 445501 (2010)]. Benchmark results are presented for a variety of systems include molecules, solids, surfaces, and defects. All results show that the ABACUS package with its associated atomic basis sets is an efficient and reliable tool for simulating both small and large-scale materials.

[1]  Su-Huai Wei,et al.  Localization and anticrossing of electron levels in GaAs 1 − x N x alloys , 1999 .

[2]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[3]  O. Sankey,et al.  Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. , 1989, Physical review. B, Condensed matter.

[4]  Edward G Hohenstein,et al.  Basis set consistent revision of the S22 test set of noncovalent interaction energies. , 2010, The Journal of chemical physics.

[5]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[6]  Lixin He,et al.  Electronic structure interpolation via atomic orbitals , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[8]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Peter D. Haynes,et al.  Localised spherical-wave basis set for O(N) total-energy pseudopotential calculations , 1997 .

[11]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[12]  J. Lennard-jones,et al.  Molecular Spectra and Molecular Structure , 1929, Nature.

[13]  D. Chadi,et al.  Atomic and Electronic Structures of Reconstructed Si(100) Surfaces , 1979 .

[14]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[15]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[16]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[17]  Kelly,et al.  Theoretical study of the Si(100) surface reconstruction. , 1995, Physical review. B, Condensed matter.

[18]  Chao Yang,et al.  Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  E Weinan,et al.  Multipole representation of the Fermi operator with application to the electronic structure analysis of metallic systems , 2008, 0812.4352.

[20]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[21]  Cohen,et al.  Quasiparticle excitations in GaAs1-xNx and AlAs1-xNx ordered alloys. , 1995, Physical review. B, Condensed matter.

[22]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[23]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[24]  Markus Weyers,et al.  Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers , 1992 .

[25]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[26]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[27]  Giovanni Onida,et al.  All-Electron versus Pseudopotential Calculation of Optical Properties: The Case of GaAs , 2001 .

[28]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[29]  Kiyoyuki Terakura,et al.  Order-disorder phase transition on the Si(001) surface: Critical role of dimer defects. , 1994, Physical review. B, Condensed matter.

[30]  J. Junquera,et al.  Systematic generation of finite-range atomic basis sets for linear-scaling calculations , 2002 .

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[33]  Baldereschi,et al.  Quasiparticle energies in semiconductors: Self-energy correction to the local-density approximation. , 1989, Physical review letters.

[34]  C Filippi,et al.  Role of electronic correlation in the Si(100) reconstruction: a quantum Monte Carlo study. , 2001, Physical review letters.

[35]  Hideaki Fujitani,et al.  Transferable atomic-type orbital basis sets for solids , 2000 .

[36]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[37]  E. Weinan,et al.  Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems , 2009 .

[38]  Taisuke Ozaki,et al.  Variationally optimized atomic orbitals for large-scale electronic structures , 2003 .

[39]  D. R. Hamann,et al.  Theory of reconstruction induced subsurface strain — application to Si(100) , 1978 .

[40]  D. Sánchez-Portal,et al.  Analysis of atomic orbital basis sets from the projection of plane-wave results , 1995, cond-mat/9509053.

[41]  Fiorentini Semiconductor band structures at zero pressure. , 1992, Physical review. B, Condensed matter.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Georg Kresse,et al.  Lattice constants and cohesive energies of alkali, alkaline-earth, and transition metals: Random phase approximation and density functional theory results , 2013 .

[44]  Eric Shea-Brown,et al.  Reliability of Layered Neural Oscillator Networks , 2008 .

[45]  Eduardo Anglada,et al.  Filtering a distribution simultaneously in real and Fourier space , 2006 .

[46]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[47]  Van de Walle CG,et al.  Electronic structure and phase stability of GaAs1-xNx alloys. , 1995, Physical review. B, Condensed matter.

[48]  H. E. Farnsworth,et al.  Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon , 1959 .

[49]  Georg Kresse,et al.  Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids , 2010 .

[50]  R. Feynman Forces in Molecules , 1939 .

[51]  G. A. Baraff,et al.  The Si (100) surface-further studies of the pairing model , 1977 .

[52]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[53]  S. Grimme Semiempirical hybrid density functional with perturbative second-order correlation. , 2006, The Journal of chemical physics.

[54]  M. Schlüter,et al.  Self-energy operators and exchange-correlation potentials in semiconductors. , 1988, Physical review. B, Condensed matter.

[55]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[56]  Chee Kwan Gan,et al.  First-principles density-functional calculations using localized spherical-wave basis sets , 2001, 1807.04926.

[57]  S. Grimme,et al.  Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. , 2006, Physical chemistry chemical physics : PCCP.

[58]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[59]  A Marek,et al.  The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  E Weinan,et al.  Pole-Based approximation of the Fermi-Dirac function , 2009, 0906.1319.

[61]  Bernard,et al.  Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. , 1987, Physical review. B, Condensed matter.

[62]  Wei,et al.  Giant and composition-dependent optical bowing coefficient in GaAsN alloys. , 1996, Physical review letters.

[63]  Emilio Artacho,et al.  Projection of plane-wave calculations into atomic orbitals , 1995 .

[64]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[65]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[66]  Jules D. Levine,et al.  Structural and electronic model of negative electron affinity on the Si/Cs/O surface , 1973 .

[67]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[68]  Walter Thiel,et al.  Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates , 2000 .

[69]  Chao Yang,et al.  SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[70]  Lixin He,et al.  Systematically improvable optimized atomic basis sets for ab initio calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[71]  M. Robinson,et al.  Accurate ionic forces and geometry optimization in linear-scaling density-functional theory with local orbitals , 2011, 1103.5869.