Velocity-Based Movement Modeling for Individual and Population Level Inference

Understanding animal movement and resource selection provides important information about the ecology of the animal, but an animal's movement and behavior are not typically constant in time. We present a velocity-based approach for modeling animal movement in space and time that allows for temporal heterogeneity in an animal's response to the environment, allows for temporal irregularity in telemetry data, and accounts for the uncertainty in the location information. Population-level inference on movement patterns and resource selection can then be made through cluster analysis of the parameters related to movement and behavior. We illustrate this approach through a study of northern fur seal (Callorhinus ursinus) movement in the Bering Sea, Alaska, USA. Results show sex differentiation, with female northern fur seals exhibiting stronger response to environmental variables.

[1]  K. Kenyon,et al.  Migration of the Northern Fur Seal, Callorhinus ursinus , 1953 .

[2]  Roger L. Gentry,et al.  Northern Fur Seal Behavior and Ecology@@@Behavior and Ecology of the Northern fur Seal , 1998 .

[3]  H. Akaike A new look at the statistical model identification , 1974 .

[4]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[5]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[6]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[7]  Derek W. Bailey,et al.  Large Herbivore Foraging and Ecological HierarchiesLandscape ecology can enhance traditional foraging theory , 1987 .

[8]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[9]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[10]  B. Manly,et al.  Resource selection by animals: statistical design and analysis for field studies. , 1994 .

[11]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[12]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[13]  D. Rubin Multiple Imputation After 18+ Years , 1996 .

[14]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[15]  R. Shanmugam Introduction to Time Series and Forecasting , 1997 .

[16]  P. Turchin Quantitative Analysis Of Movement , 1998 .

[17]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[18]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[19]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[20]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[21]  O. Cappé,et al.  Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers , 2003 .

[22]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[23]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[24]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[25]  Adrian E. Raftery,et al.  MCLUST Version 3: An R Package for Normal Mixture Modeling and Model-Based Clustering , 2006 .

[26]  David C. Wheeler,et al.  An assessment of coefficient accuracy in linear regression models with spatially varying coefficients , 2007, J. Geogr. Syst..

[27]  Dale L. Zimmerman,et al.  An animal movement model incorporating home range and habitat selection , 2008, Environmental and Ecological Statistics.

[28]  Adrian E. Raftery,et al.  MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering † , 2007 .

[29]  E. Revilla,et al.  A movement ecology paradigm for unifying organismal movement research , 2008, Proceedings of the National Academy of Sciences.

[30]  Alan Julian Izenman,et al.  Modern Multivariate Statistical Techniques , 2008 .

[31]  Wayne M. Getz,et al.  A framework for generating and analyzing movement paths on ecological landscapes , 2008, Proceedings of the National Academy of Sciences.

[32]  Devin S Johnson,et al.  A General Framework for the Analysis of Animal Resource Selection from Telemetry Data , 2008, Biometrics.

[33]  Bernie J. McConnell,et al.  Estimating space‐use and habitat preference from wildlife telemetry data , 2008 .

[34]  Benjamin D. Dalziel,et al.  Fitting Probability Distributions to Animal Movement Trajectories: Using Artificial Neural Networks to Link Distance, Resources, and Memory , 2008, The American Naturalist.

[35]  Patrick W. Robinson,et al.  A Parsimonious Approach to Modeling Animal Movement Data , 2009, PloS one.

[36]  Eliezer Gurarie,et al.  A novel method for identifying behavioural changes in animal movement data. , 2009, Ecology letters.

[37]  Carey E. Kuhn,et al.  Advances in the tracking of marine species: using GPS locations to evaluate satellite track data and a continuous-time movement model , 2009 .

[38]  Catherine A Calder,et al.  Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. , 2009, Ecological applications : a publication of the Ecological Society of America.

[39]  John H. Maindonald,et al.  Modern Multivariate Statistical Techniques: Regression, Classification and Manifold Learning , 2009 .

[40]  Michael D. Sumner,et al.  Bayesian Estimation of Animal Movement from Archival and Satellite Tags , 2009, PloS one.

[41]  Paul J Rathouz,et al.  Accounting for animal movement in estimation of resource selection functions: sampling and data analysis. , 2009, Ecology.

[42]  Mevin B. Hooten,et al.  Agent-Based Inference for Animal Movement and Selection , 2010 .

[43]  Jason Matthiopoulos,et al.  The interpretation of habitat preference metrics under use–availability designs , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  Håkan Sand,et al.  Building a mechanistic understanding of predation with GPS-based movement data , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  Jacqueline L. Frair,et al.  Building the bridge between animal movement and population dynamics , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Adrian E Raftery,et al.  Inference from Multiple Imputation for Missing Data Using Mixtures of Normals. , 2010, Statistical methodology.

[47]  Stanley M Tomkiewicz,et al.  Global positioning system and associated technologies in animal behaviour and ecological research , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  Jay M. Ver Hoef,et al.  Fast computing of some generalized linear mixed pseudo-models with temporal autocorrelation , 2010, Comput. Stat..

[49]  M. Hooten,et al.  Statistical Agent-Based Models for Discrete Spatio-Temporal Systems , 2010 .

[50]  Leo Polansky,et al.  From moonlight to movement and synchronized randomness: Fourier and wavelet analyses of animal location time series data. , 2010, Ecology.

[51]  F. Cagnacci,et al.  Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  Josh M. London,et al.  Bayesian Inference for Animal Space Use and Other Movement Metrics , 2011 .

[53]  Brett T. McClintock,et al.  A general discrete‐time modeling framework for animal movement using multistate random walks , 2012 .