Phase Change Memory A comprehensive and thorough review of PCM technologies, including a discussion of material and device issues, is provided in this paper.

In this paper, recent progress of phase change memory (PCM) is reviewed. The electrical and thermal proper- ties of phase change materials are surveyed with a focus on the scalability of the materials and their impact on device design. Innovations in the device structure, memory cell selector, and strategies for achieving multibit operation and 3-D, multilayer high-density memory arrays are described. The scaling prop- erties of PCM are illustrated with recent experimental results using special device test structures and novel material synthe- sis. Factors affecting the reliability of PCM are discussed.

[1]  C. M. Jefferson,et al.  Characterization of phase change memory materials using phase change bridge devices , 2009 .

[2]  Simone Raoux,et al.  Crystallization properties of ultrathin phase change films , 2008 .

[3]  Y. Nishi,et al.  Integrating Phase-Change Memory Cell With Ge Nanowire Diode for Crosspoint Memory—Experimental Demonstration and Analysis , 2008, IEEE Transactions on Electron Devices.

[4]  Y.C. Chen,et al.  A Novel Cross-Spacer Phase Change Memory with Ultra-Small Lithography Independent Contact Area , 2007, 2007 IEEE International Electron Devices Meeting.

[5]  David G. Cahill,et al.  Fullerene thermal insulation for phase change memory , 2008 .

[6]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[7]  Michael S. Shur,et al.  Reply to ‘‘Comment on ‘Threshold switching in chalcogenide‐glass thin films’ ’’ , 1984 .

[8]  Kuan-Neng Chen,et al.  Irreversible modification of Ge2Sb2Te5 phase change material by nanometer-thin Ti adhesion layers in a device-compatible stack , 2007 .

[9]  Y. Sasago,et al.  Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode , 2006, 2009 Symposium on VLSI Technology.

[10]  J. Cluzel,et al.  Thermal characterization and analysis of phase change random access memory , 2005 .

[11]  Simone Raoux,et al.  Phase change materials : science and applications , 2009 .

[12]  Dong Yu,et al.  Minimum voltage for threshold switching in nanoscale phase-change memory. , 2008, Nano letters.

[13]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[14]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[15]  R. Delhougne,et al.  Evidence of the Thermo-Electric Thomson Effect and Influence on the Program Conditions and Cell Optimization in Phase-Change Memory Cells , 2007, 2007 IEEE International Electron Devices Meeting.

[16]  John Pierce Reifenberg Thermal phenomena in phase change memory , 2010 .

[17]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[18]  G. Spadini,et al.  The Role of Interfaces in Damascene Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[19]  L. Pileggi,et al.  Phase change random access memory, thermal analysis , 2006, Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006..

[20]  You Yin,et al.  Multilevel Storage in Lateral Top-Heater Phase-Change Memory , 2008, IEEE Electron Device Letters.

[21]  F. Pellizzer,et al.  Novel /spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[22]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[23]  A. Majumdar,et al.  Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces , 2004 .

[24]  H. Wong,et al.  Analysis of Temperature in Phase Change Memory Scaling , 2007, IEEE Electron Device Letters.

[25]  U. Ghoshal,et al.  Study of interface effects in thermoelectric microrefrigerators , 2000 .

[26]  D. Ielmini,et al.  Intrinsic Data Retention in Nanoscaled Phase-Change Memories—Part II: Statistical Analysis and Prediction of Failure Time , 2006, IEEE Transactions on Electron Devices.

[27]  M. Breitwisch,et al.  Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.

[28]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[29]  Kenichi Nishiuchi,et al.  High Speed Overwritable Phase Change Optical Disk Material , 1987 .

[30]  K. Goodson,et al.  Ordering Up the Minimum Thermal Conductivity of Solids , 2007, Science.

[31]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[32]  Simone Raoux,et al.  Crystallization dynamics of nitrogen-doped Ge2Sb2Te5 , 2009 .

[33]  Bomy Chen,et al.  Multilevel Data Storage Characteristics of Phase Change Memory Cell with Doublelayer Chalcogenide Films (Ge2Sb2Te5 and Sb2Te3) , 2007 .

[34]  K. Goodson,et al.  The Impact of Thermal Boundary Resistance in Phase-Change Memory Devices , 2008, IEEE Electron Device Letters.

[35]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[36]  B. Gleixner,et al.  A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[37]  Yuan Zhang,et al.  Scaling properties of phase change materials , 2007, 2007 Non-Volatile Memory Technology Symposium.

[38]  Daniele Ielmini,et al.  Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses , 2008 .

[39]  R. Shelby,et al.  Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. , 2007, Nature materials.

[40]  H.-S. Philip Wong,et al.  Synthesis and Size-Dependent Crystallization of Colloidal Germanium Telluride , 2010 .

[41]  S. G. Bishop,et al.  Thermal conductivity of phase-change material Ge2Sb2Te5 , 2006 .

[42]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[43]  Gerald D. Mahan,et al.  Wiedemann–Franz law at boundaries , 1999 .

[44]  Simone Raoux,et al.  Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method , 2009 .

[45]  B. Kleveland,et al.  512 Mb PROM with 8 layers of antifuse/diode cells , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[46]  H. Wong,et al.  Phase change nanodot arrays fabricated using a self-assembly diblock copolymer approach , 2007 .

[47]  P. Zuliani,et al.  Phase Change Memory technology for embedded non volatile memory applications for 90nm and beyond , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[48]  M.H. Kryder,et al.  After Hard Drives—What Comes Next? , 2009, IEEE Transactions on Magnetics.

[49]  I. Karpov,et al.  Nucleation switching in phase change memory , 2007 .

[50]  A. Pirovano,et al.  Numerical Implementation of Low Field Resistance Drift for Phase Change Memory Simulations , 2008, 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design.

[51]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[52]  D. Ielmini,et al.  Modeling of Programming and Read Performance in Phase-Change Memories—Part II: Program Disturb and Mixed-Scaling Approach , 2008, IEEE Transactions on Electron Devices.

[53]  Matthias Wuttig,et al.  Mechanical stresses upon crystallization in phase change materials , 2001 .

[54]  Songlin Feng,et al.  Lower current operation of phase change memory cell with a thin TiO2 layer , 2008 .

[55]  Junichi Akita,et al.  Pulse number control of electrical resistance for multi-level storage based on phase change , 2007 .

[56]  Matthias Wuttig,et al.  SET Characteristics of Phase Change Bridge Devices , 2008 .

[57]  Xiaoqian Wei,et al.  Thickness Dependent Nano-Crystallization in Ge2Sb2Te5 Films and Its Effect on Devices , 2007 .

[58]  M. Asheghi,et al.  Thermal Boundary Resistance Measurements for Phase-Change Memory Devices , 2010, IEEE Electron Device Letters.

[59]  Songlin Feng,et al.  Te-Free SiSb Phase Change Material for High Data Retention Phase Change Memory Application , 2007 .

[60]  Andrea L. Lacaita,et al.  Phase change memories: State-of-the-art, challenges and perspectives , 2005 .

[61]  Guido Torelli,et al.  A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage , 2009, IEEE Journal of Solid-State Circuits.

[62]  Songlin Feng,et al.  Phase change memory cell based on Sb2Te3/TiN/Ge2Sb2Te5 sandwich-structure , 2009 .

[63]  M. Meyyappan,et al.  One-Dimensional Phase-Change Nanostructure: Germanium Telluride Nanowire , 2007 .

[64]  B. Rajendran,et al.  Endurance Improvement of Ge2Sb2Te5-Based Phase Change Memory , 2009, 2009 IEEE International Memory Workshop.

[65]  M. Meyyappan,et al.  Chalcogenide-Nanowire-Based Phase Change Memory , 2008, IEEE Transactions on Nanotechnology.

[66]  B. Gleixner,et al.  Evolution of phase change memory characteristics with operating cycles: Electrical characterization and physical modeling , 2007 .

[67]  Se-Ho Lee,et al.  Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires , 2006 .

[68]  M. Lankhorst,et al.  Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials , 2002 .

[69]  Matthias Wuttig,et al.  Threshold field of phase change memory materials measured using phase change bridge devices , 2009 .

[70]  Dolores C. Miller,et al.  Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials , 2007 .

[71]  Songlin Feng,et al.  Nitrogen-implanted Ge2Sb2Te5 film used as multilevel storage media for phase change random access memory , 2004 .

[72]  Yeonwoong Jung,et al.  Size-dependent surface-induced heterogeneous nucleation driven phase-change in Ge2Sb2Te5 nanowires. , 2008, Nano letters.

[73]  D. Ielmini,et al.  Modeling of Programming and Read Performance in Phase-Change Memories—Part I: Cell Optimization and Scaling , 2008, IEEE Transactions on Electron Devices.

[74]  D. Ielmini,et al.  Transient effects of delay, switching and recovery in phase change memory (PCM) devices , 2008, 2008 IEEE International Electron Devices Meeting.

[75]  U-In Chung,et al.  An edge contact type cell for Phase Change RAM featuring very low power consumption , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).

[76]  Simone Raoux,et al.  Influence of interfaces on the crystallization characteristics of Ge2Sb2Te5 , 2009, 2009 10th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[77]  S.Y. Lee,et al.  Writing current reduction for high-density phase-change RAM , 2003, IEEE International Electron Devices Meeting 2003.

[78]  Eric Pop,et al.  Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films , 2007 .

[79]  Ashish Jagmohan,et al.  Information theory based design of phase-change memories , 2010, 2010 Information Theory and Applications Workshop (ITA).

[80]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[81]  C. Main,et al.  The threshold characteristics of chalcogenide-glass memory switches , 1979 .

[82]  D. Ielmini,et al.  Intrinsic Data Retention in Nanoscaled Phase-Change Memories—Part I: Monte Carlo Model for Crystallization and Percolation , 2006, IEEE Transactions on Electron Devices.

[83]  Andrea L. Lacaita,et al.  Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5 , 2008 .

[84]  M. Breitwisch,et al.  Novel Lithography-Independent Pore Phase Change Memory , 2007, 2007 IEEE Symposium on VLSI Technology.

[85]  Young-Tae Kim,et al.  Ge2Sb2Te5 Confined Structures and Integration of 64 Mb Phase-Change Random Access Memory , 2005 .

[86]  I. Yoo,et al.  2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications , 2007, 2007 IEEE International Electron Devices Meeting.

[87]  Jian-Min Zuo,et al.  Crystalline and amorphous structures of Ge–Sb–Te nanoparticles , 2007 .

[88]  Ching-Te Chuang,et al.  Selective Device Structure Scaling and Parasitics Engineering: A Way to Extend the Technology Roadmap , 2009, IEEE Transactions on Electron Devices.

[89]  N. Righos,et al.  A stackable cross point Phase Change Memory , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[90]  I-Ru Chen,et al.  Compact Thermal Model for Vertical Nanowire Phase-Change Memory Cells , 2009, IEEE Transactions on Electron Devices.

[91]  B. Gleixner,et al.  Data Retention Characterization of Phase-Change Memory Arrays , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.

[92]  W P Risk,et al.  In situ 3omega techniques for measuring thermal conductivity of phase-change materials. , 2008, The Review of scientific instruments.

[93]  Kinam Kim,et al.  Future memory technology: challenges and opportunities , 2008, 2008 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA).

[94]  Roberto Bez,et al.  Chalcogenide PCM: a memory technology for next decade , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[95]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[96]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[97]  A. Pirovano,et al.  Self-aligned μTrench phase-change memory cell architecture for 90nm technology and beyond , 2007, ESSDERC 2007 - 37th European Solid State Device Research Conference.

[98]  H.-S. Philip Wong,et al.  1D thickness scaling study of phase change material (Ge2Sb2Te5) using a pseudo 3-terminal device , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[99]  Yi Zhang,et al.  Multi‐bit storage in reset process of Phase Change Access Memory (PRAM) , 2007 .

[100]  Tow Chong Chong,et al.  Phase change random access memory cell with superlattice-like structure , 2006 .

[101]  A. Pirovano,et al.  A physics-based model of electrical conduction decrease with time in amorphous Ge2Sb2Te5 , 2009 .

[102]  S.O. Park,et al.  Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[103]  S. G. Bishop,et al.  Glassy Solid Observation of the Role of Subcritical Nuclei in Crystallization of a , 2012 .

[104]  Yihong Wu,et al.  Fast phase transitions induced by picosecond electrical pulses on phase change memory cells , 2008 .

[105]  I. Baek,et al.  Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[106]  N. Huby,et al.  Low Temperature Rectifying Junctions for Crossbar Non-Volatile Memory Devices , 2009, 2009 IEEE International Memory Workshop.

[107]  Jiale Liang,et al.  Cross-Point Memory Array Without Cell Selectors—Device Characteristics and Data Storage Pattern Dependencies , 2010, IEEE Transactions on Electron Devices.

[108]  Kinarn Kim,et al.  Reliability investigations for manufacturable high density PRAM , 2005, 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual..

[109]  P. Zhou,et al.  Nano-crystalline phase change memory with composite Si-Sb-Te film for better data retention and lower operation current , 2007, 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop.

[110]  M. Breitwisch,et al.  Novel One-Mask Self-Heating Pillar Phase Change Memory , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[111]  S. Lai,et al.  OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[112]  K. Goodson,et al.  Compact thermal model for phase change memory nanodevices , 2008, 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[113]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[114]  U-In Chung,et al.  Parallel multi-confined (PMC) cell technology for high density MLC PRAM , 2006, 2009 Symposium on VLSI Technology.

[115]  Simone Raoux,et al.  Amorphization of Crystalline Phase Change Material by Ion Implantation , 2010 .

[116]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[117]  H.-S. Philip Wong,et al.  Phase Change Nanodots Patterning using a Self-Assembled Polymer Lithography and Crystallization Analysis , 2008 .

[118]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[119]  H. Choi,et al.  Synthesis of Size- and Structure-Controlled Ge2Sb2Te5 Nanoparticles , 2005 .

[120]  Simone Raoux,et al.  Influence of interfaces and doping on the crystallization temperature of Ge–Sb , 2009 .

[121]  A. Kotabe,et al.  Doped In-Ge-Te Phase Change Memory Featuring Stable Operation and Good Data Retention , 2007, 2007 IEEE International Electron Devices Meeting.

[122]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[123]  R. Shelby,et al.  Phase change materials and their application to random access memory technology , 2008 .