Most “Dark Matter” Transcripts Are Associated With Known Genes

Short-read RNA sequencing in mouse and human tissues shows that most transcripts are encoded within or nearby known genes and that most of the genome is not transcribed.

[1]  M. Groudine,et al.  Human fetal to adult hemoglobin switching: changes in chromatin structure of the beta-globin gene locus. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Tuan,et al.  The "beta-like-globin" gene domain in human erythroid cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. S. Gross,et al.  Nuclease hypersensitive sites in chromatin. , 1988, Annual review of biochemistry.

[4]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[5]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[6]  The FANTOM Consortium and the RIKEN Genome Exploration Team,et al.  Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs , 2002 .

[7]  S. P. Fodor,et al.  Large-Scale Transcriptional Activity in Chromosomes 21 and 22 , 2002, Science.

[8]  E. Birney,et al.  Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs , 2002, Nature.

[9]  M. Tomita,et al.  Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. , 2003, Genome research.

[10]  J. Rinn,et al.  The transcriptional activity of human Chromosome 22. , 2003, Genes & development.

[11]  Ram Samudrala,et al.  Mouse transcriptome: Neutral evolution of ‘non-coding’ complementary DNAs , 2004, Nature.

[12]  Thomas E. Royce,et al.  Global Identification of Human Transcribed Sequences with Genome Tiling Arrays , 2004, Science.

[13]  Scott A. Rifkin,et al.  A Gene Expression Map for the Euchromatic Genome of Drosophila melanogaster , 2004, Science.

[14]  J. Stamatoyannopoulos,et al.  Discovery of functional noncoding elements by digital analysis of chromatin structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Cawley,et al.  Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. , 2004, Genome research.

[16]  Vladimir Svetnik,et al.  A comprehensive transcript index of the human genome generated using microarrays and computational approaches , 2004, Genome Biology.

[17]  N. Nomura,et al.  Complete sequencing and characterization of 21,243 full-length human cDNAs , 2004, Nature Genetics.

[18]  David Haussler,et al.  Computational identification of evolutionarily conserved exons , 2004, RECOMB.

[19]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[20]  Jürgen Brosius,et al.  Waste not, want not--transcript excess in multicellular eukaryotes. , 2005, Trends in genetics : TIG.

[21]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[22]  Mark Gerstein,et al.  Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping. , 2005, Trends in genetics : TIG.

[23]  E. Schadt,et al.  Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. , 2005, Trends in genetics : TIG.

[24]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[25]  G. Helt,et al.  Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution , 2005, Science.

[26]  P. Stadler,et al.  Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome , 2005, Nature Biotechnology.

[27]  Janet Kelso,et al.  Functionality of Intergenic Transcription: An Evolutionary Comparison , 2006, PLoS genetics.

[28]  T. Gingeras,et al.  TUF Love for “Junk” DNA , 2006, Cell.

[29]  Wing-Kin Sung,et al.  PET-Tool: a software suite for comprehensive processing and managing of Paired-End diTag (PET) sequence data , 2006, BMC Bioinformatics.

[30]  Martin S. Taylor,et al.  Genome-wide analysis of mammalian promoter architecture and evolution , 2006, Nature Genetics.

[31]  J. Mattick,et al.  Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. , 2005, Genome research.

[32]  D. Geiger,et al.  Polyadenylation of ribosomal RNA in human cells , 2006 .

[33]  David Haussler,et al.  Identification and Classification of Conserved RNA Secondary Structures in the Human Genome , 2006, PLoS Comput. Biol..

[34]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[35]  F. Winston,et al.  Analysis of Transcriptional Activation at a Distance in Saccharomyces cerevisiae , 2007, Molecular and Cellular Biology.

[36]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[37]  P. Stadler,et al.  RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription , 2007, Science.

[38]  K. Kinzler,et al.  The Antisense Transcriptomes of Human Cells , 2008, Science.

[39]  Wing Hung Wong,et al.  SeqMap: mapping massive amount of oligonucleotides to the genome , 2008, Bioinform..

[40]  S. Ranade,et al.  Stem cell transcriptome profiling via massive-scale mRNA sequencing , 2008, Nature Methods.

[41]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[42]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[43]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[44]  Mikkel H. Schierup,et al.  RNA Exosome Depletion Reveals Transcription Upstream of Active Human Promoters , 2008, Science.

[45]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[46]  I. Goodhead,et al.  Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution , 2008, Nature.

[47]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[48]  Marcel H. Schulz,et al.  A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome , 2008, Science.

[49]  Mark Gerstein,et al.  A genomic analysis of RNA polymerase II modification and chromatin architecture related to 3' end RNA polyadenylation. , 2008, Genome research.

[50]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[51]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[52]  Ronghua Chen,et al.  Digital transcriptome profiling using selective hexamer priming for cDNA synthesis , 2009, Nature Methods.

[53]  B. Cairns,et al.  Distinctive Chromatin in Human Sperm Packages Genes for Embryo Development , 2009, Nature.

[54]  T. Hughes,et al.  Establishing legitimacy and function in the new transcriptome. , 2009, Briefings in functional genomics & proteomics.

[55]  M. Gerstein,et al.  Unlocking the secrets of the genome , 2009, Nature.

[56]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[57]  J. Mattick The Genetic Signatures of Noncoding RNAs , 2009, PLoS genetics.

[58]  D. Parkhomchuk,et al.  Use of high throughput sequencing to observe genome dynamics at a single cell level , 2009, Proceedings of the National Academy of Sciences.

[59]  R. Sachidanandam,et al.  Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs , 2009, Nature.

[60]  J. Kawai,et al.  Tiny RNAs associated with transcription start sites in animals , 2009, Nature Genetics.

[61]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[62]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[63]  Raymond K. Auerbach,et al.  Mapping accessible chromatin regions using Sono-Seq , 2009, Proceedings of the National Academy of Sciences.

[64]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[65]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[66]  John M Westlund,et al.  Genome-wide discovery of human heart enhancers. , 2010, Genome research.

[67]  Tomas W. Fitzgerald,et al.  Origins and functional impact of copy number variation in the human genome , 2010, Nature.