Bayesian estimation of system reliability in Brownian stress-strength models

A stress-strength system fails as soon as the applied stress,X, is at least as much as the strength,Y, of the system. Stress and strength are time-varying in many real-life systems but typical statistical models for stress-strength systems are static. In this article, the stress and strength processes are dynamically modeled as Brownian motions. The resulting stress-strength system is then governed by a time-homogeneous Markov process with an absorption barrier at O. Conjugate as well as non-informative priors are developed for the model parameters and Markov chain sampling methods are used for posterior inference of the reliability of the stress-strength system. A generalization of this model is described next where the different stress-strength systems are assumed to be exchangeable. The proposed Bayesian analyses are illustrated in two examples where we obtain posterior estimates as well as perform model checking by cross-validation.