A control algorithm for autonomous optimization of extracellular recordings

This paper develops a control algorithm that can autonomously position an electrode so as to find and then maintain an optimal extracellular recording position. The algorithm was developed and tested in a two-neuron computational model representative of the cells found in cerebral cortex. The algorithm is based on a stochastic optimization of a suitably defined signal quality metric and is shown capable of finding the optimal recording position along representative sampling directions, as well as maintaining the optimal signal quality in the face of modeled tissue movements. The application of the algorithm to acute neurophysiological recording experiments and its potential implications to chronic recording electrode arrays are discussed

[1]  G. Loeb,et al.  R. Lemon , 1985, Neuroscience.

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  R. Wets,et al.  Stochastic programming , 1989 .

[4]  B. McNaughton,et al.  Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex , 1995, Journal of Neuroscience Methods.

[5]  G. Larry Bretthorst,et al.  Bayesian analysis. II. Signal detection and model selection , 1990 .

[6]  Richard A. Andersen,et al.  Latent variable models for neural data analysis , 1999 .

[7]  Michael Steven Williams Electrophysiological Techniques , 2007 .

[8]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[9]  Christof Koch,et al.  Electrical Interactions via the Extracellular Potential Near Cell Bodies , 1999, Journal of Computational Neuroscience.

[10]  Michael S. Lewicki,et al.  Bayesian Modeling and Classification of Neural Signals , 1993, Neural Computation.

[11]  K. Frank,et al.  CHAPTER 2 – MICROELECTRODES FOR RECORDING AND STIMULATION , 1964 .

[12]  D. Kleinfeld,et al.  Variability of extracellular spike waveforms of cortical neurons. , 1996, Journal of neurophysiology.

[13]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[14]  Arthur Prochazka,et al.  Methods for neuronal recording in conscious animals , 1984 .

[15]  H. Akaike A new look at the statistical model identification , 1974 .

[16]  D. N. Geary Mixture Models: Inference and Applications to Clustering , 1989 .

[17]  R. N. Lemon,et al.  Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes , 1999, Journal of Neuroscience Methods.

[18]  W. M. Wonham,et al.  The control of discrete event systems , 1989 .

[19]  Joel W. Burdick,et al.  Spike detection using the continuous wavelet transform , 2005, IEEE Transactions on Biomedical Engineering.

[20]  W. Rall Electrophysiology of a dendritic neuron model. , 1962, Biophysical journal.

[21]  D. Robinson,et al.  The electrical properties of metal microelectrodes , 1968 .

[22]  Edwin Thompson Jaynes,et al.  Probability theory , 2003 .

[23]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[24]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[25]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[26]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[27]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[28]  M. Abeles,et al.  Multispike train analysis , 1977, Proceedings of the IEEE.

[29]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[30]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[31]  G. Buzsáki,et al.  Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells , 2001, Neuron.

[32]  Peter C. Cheeseman,et al.  Bayesian Classification (AutoClass): Theory and Results , 1996, Advances in Knowledge Discovery and Data Mining.

[33]  Cornelius Schwarz,et al.  Multielectrode Recording from the Cerebellum , 1998 .

[34]  Zoran Nenadic,et al.  Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials. , 2005, Journal of neurophysiology.

[35]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[36]  G. Wornell Wavelet-based representations for the 1/f family of fractal processes , 1993, Proc. IEEE.

[37]  G. Holt A critical reexamination of some assumptions and implications of cable theory in neurobiology , 1998 .

[38]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[39]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[40]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[41]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[42]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[43]  Peter Kall,et al.  Stochastic Programming , 1995 .

[44]  Roger J.-B. Wets,et al.  Stochastic programming, an Introduction , 1988 .

[45]  H. Prosper Bayesian Analysis , 2000, hep-ph/0006356.

[46]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[47]  I. Bankman,et al.  Optimal detection, classification, and superposition resolution in neural waveform recordings , 1993, IEEE Transactions on Biomedical Engineering.

[48]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[49]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[50]  Yuri Ermoliev,et al.  Stochastic programming, an introduction. Numerical techniques for stochastic optimization , 1988 .

[51]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .