Tailoring properties and functionalities of nanostructures through compositions, components and morphologies

Title of Document: TAILORING PROPERTIES AND FUNCTIONALITIES OF NANOSTRUCTURES THROUGH COMPOSITIONS, COMPONENTS AND MORPHOLOGIES Lin Weng, Ph.D., 2013 Directed By: Professor Min Ouyang, Department of Physics The field of nanoscience and nanotechnology has made significant progresses over the last thirty years. Sophisticated nanostructures with tunable properties for novel physics and applications have been successfully fabricated, characterized and underwent practical test. In this thesis, I will focus on our recent efforts to develop new strategies to manipulate the properties of nanostructures. Particularly, three questions have been answered from our perspective, based on the nanomaterials synthesized: (1) How does the composition affect a novel nanostructure? We started from single-molecule precursors to reach nanostructures whose bulk counterparts only exist under extreme conditions. Fe3S and Fe3S2 are used as examples to demonstrate this synthetic strategy. Their potential magnetic properties have been measured, which may lead to interesting findings in astronomy and materials science. (2) How to achieve modularity control at nanoscale by a general bottom-up approach? Starting with reviewing the current status of this field, our recent experimental progresses towards delicate modularity control are presented by abundant novel heteronanostructures. An interesting catalytic mechanism of these nanostructures has also been verified, which involves the interaction between phonons, photons, plasmons, and excitons. (3) What can the morphology difference tell us about the inside of nanostructures? By comparing a series of data from three types of CdSe/CdS core-shell structures, a conclusion has been reached on the CdS growth mechanism on CdSe under different conditions, which also may lead to a solution to the asymmetry problem in the synthesis of CdSe/CdS nanorods. Finally this thesis is concluded by a summary and future outlook. TAILORING PROPERTIES AND FUNCTIONALITIES OF NANOSTRUCTURES THROUGH COMPOSITIONS, COMPONENTS AND MORPHOLOGIES

[1]  L. Manna,et al.  Growth of colloidal nanoparticles of group II–VI and IV–VI semiconductors on top of magnetic iron–platinum nanocrystals , 2008 .

[2]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[3]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[4]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Rabani,et al.  Electrostatic force microscopy study of single Au-CdSe hybrid nanodumbbells: evidence for light-induced charge separation. , 2009, Nano letters.

[6]  Paul I. Archer,et al.  Direct Observation of sp-d exchange interactions in colloidal Mn2+- and Co2+-doped CdSe quantum dots. , 2007, Nano letters.

[7]  S. Mukerjee,et al.  Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation , 1998 .

[8]  Shouheng Sun,et al.  Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au. , 2009, Small.

[9]  Yongan Yang,et al.  Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor. , 2008, Angewandte Chemie.

[10]  J. Cheon,et al.  Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. , 2008, Accounts of chemical research.

[11]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[12]  A. Hagfeldt,et al.  Purpose-built metal oxide nanomaterials. The emergence of a new generation of smart materials , 2000 .

[13]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[14]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[15]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[16]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[17]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[18]  Q. Song,et al.  Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. , 2004, Journal of the American Chemical Society.

[19]  C. N. R. Rao,et al.  Science and technology of nanomaterials: current status and future prospects , 2001 .

[20]  M. Kovalenko,et al.  Alkyl chains of surface ligands affect polytypism of cdse nanocrystals and play an important role in the synthesis of anisotropic nanoheterostructures. , 2010, Journal of the American Chemical Society.

[21]  R. Sharma,et al.  Thermodynamics and phase relationships of transition metal-sulfur systems: Part III. Thermodynamic properties of the Fe-S liquid phase and the calculation of the Fe-S phase diagram , 1979 .

[22]  Charles M Lieber,et al.  Synthesis of CdS and ZnS nanowires using single-source molecular precursors. , 2003, Journal of the American Chemical Society.

[23]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[24]  J. Kendall Inorganic Chemistry , 1944, Nature.

[25]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[26]  Luke P. Lee,et al.  High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. , 2005, Nano letters.

[27]  T. Alan Hatton,et al.  Synthesis, properties and applications of Janus nanoparticles , 2011 .

[28]  Bing Xu,et al.  Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. , 2009, Accounts of chemical research.

[29]  Uri Banin,et al.  Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. , 2008, Nano letters.

[30]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[31]  Peidong Yang,et al.  Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. , 2010, Journal of the American Chemical Society.

[32]  Prashant K. Jain,et al.  Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine , 2009 .

[33]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[34]  Tsuyoshi Takata,et al.  Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light , 2008 .

[35]  Hui Zhang,et al.  Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. , 2005, Nano letters.

[36]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[37]  G. Somorjai,et al.  Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: Theory and experimental evidence. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Ben L. Feringa,et al.  Unidirectional molecular motor on a gold surface , 2005, Nature.

[39]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[40]  J. Liu,et al.  One-step synthesis of FePt nanoparticles with tunable size. , 2004, Journal of the American Chemical Society.

[41]  D. Sherman Stability of possible Fe-FeS and Fe-FeO alloy phases at high pressure and the composition of the Earth's core , 1995 .

[42]  T. Webster,et al.  Nanotechnology and nanomaterials: Promises for improved tissue regeneration , 2009 .

[43]  S. Russo,et al.  Morphological Stability of Pyrite FeS2 Nanocrystals in Water , 2009 .

[44]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[45]  Shouheng Sun,et al.  A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation , 2008 .

[46]  J. Greneche,et al.  Hydrothermal synthesis of monodisperse magnetite nanoparticles , 2006 .

[47]  S. Ogale,et al.  Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[48]  T. Usselman Experimental approach to the state of the core; Part I, The liquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kb , 1975 .

[49]  Savas Delikanli,et al.  Bifunctional Magneto-Optical FePt−CdS Hybrid Nanoparticles , 2009 .

[50]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[51]  Xin Wang,et al.  Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles , 2008 .

[52]  M. E. Williams,et al.  Controlling Transport and Chemical Functionality of Magnetic Nanoparticles , 2008 .

[53]  Hye-Young Park,et al.  Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles , 2007 .

[54]  M. Sastry,et al.  Langmuir−Blodgett Films of Carboxylic Acid Derivatized Silver Colloidal Particles: Role of Subphase pH on Degree of Cluster Incorporation , 1997 .

[55]  M. Urban,et al.  Acorn-shape polymeric nano-colloids: synthesis and self-assembled films. , 2009, Macromolecular rapid communications.

[56]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[57]  L. Liz‐Marzán,et al.  Direct observation of chemical reactions in silica‐coated gold and silver nanoparticles , 1997 .

[58]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[59]  David J. Williams,et al.  The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis(diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials , 2004 .

[60]  Domagoj Belić,et al.  Ag-Au nanoclusters: Structure and phase segregation , 2011 .

[61]  Hideo Daimon,et al.  Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. , 2009, Nano letters.

[62]  R. King Organosulfur Derivatives of Metal Carbonyls. II. The Reaction between Triiron Dodecacarbonyl and Certain Episulfide Derivatives , 1963 .

[63]  U. Banin,et al.  Synthesis of hybrid CdS-Au colloidal nanostructures. , 2006, The journal of physical chemistry. B.

[64]  Xinheng Li,et al.  Light-induced selective deposition of metals on gold-tipped CdSe-seeded CdS nanorods. , 2011, Journal of the American Chemical Society.

[65]  K. Funakoshi,et al.  Thermal expansion of iron-rich alloys and implications for the Earth's core , 2007, Proceedings of the National Academy of Sciences.

[66]  Serge Ravaine,et al.  Design and synthesis of Janus micro- and nanoparticles , 2005 .

[67]  C. Murphy,et al.  Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution , 2003 .

[68]  C. Zhong,et al.  Molecularly-mediated assembly of gold nanoparticles , 2007 .

[69]  J. Ying,et al.  Bifunctional Fe3O4–Ag Heterodimer Nanoparticles for Two‐Photon Fluorescence Imaging and Magnetic Manipulation , 2008 .

[70]  M. Biener,et al.  Reaction of Au(111) with Sulfur and Oxygen: Scanning Tunneling Microscopic Study , 2005 .

[71]  Andreas Walther,et al.  Janus particles. , 2008, Soft matter.

[72]  D. Ghosh,et al.  Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol. , 2009, ACS applied materials & interfaces.

[73]  Luigi Carbone,et al.  Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms , 2010 .

[74]  C. Murphy,et al.  Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires , 2003 .

[75]  Wen-sheng Hou,et al.  The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. , 2008, Dental materials : official publication of the Academy of Dental Materials.

[76]  X. Batlle,et al.  Finite-size effects in fine particles: magnetic and transport properties , 2002 .

[77]  A. Zunger,et al.  Direct carrier multiplication due to inverse Auger scattering in CdSe quantum dots , 2004 .

[78]  W. Jaegermann,et al.  Photoelectrochemistry of Highly Quantum Efficient Single‐Crystalline n ‐ FeS2 (Pyrite) , 1986 .

[79]  A. Mohs,et al.  Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. , 2009, Nature nanotechnology.

[80]  D. F. Kelley,et al.  Nanoscale Organization of GaSe Quantum Dots on a Gold Surface , 2009 .

[81]  Dominique Givord,et al.  Beating the superparamagnetic limit with exchange bias , 2003, Nature.

[82]  Bing Xu,et al.  Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. , 2005, Journal of the American Chemical Society.

[83]  S. V. Ovsyannikov,et al.  Is the Verwey transition in Fe3O4 magnetite driven by a Peierls distortion? , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[84]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[85]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[86]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[87]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[88]  Andrew D Maynard,et al.  Nanotechnology: the next big thing, or much ado about nothing? , 2007, The Annals of occupational hygiene.

[89]  M. El-Sayed,et al.  Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. , 2004, Journal of the American Chemical Society.

[90]  P. Jain,et al.  Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. , 2006, The journal of physical chemistry. B.

[91]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[92]  Wei Ji,et al.  Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes , 1999 .

[93]  B. R. Bennett,et al.  Robust electrical spin injection into a semiconductor heterostructure , 2000 .

[94]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[95]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[96]  Takeshi Fujita,et al.  Preparation and Optical Absorption Spectra of Dye-Coated Au, Ag, and Au/Ag Colloidal Nanoparticles in Aqueous Solutions and in Alternate Assemblies , 2001 .

[97]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[98]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[99]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[100]  S. Ghosh,et al.  Solution phase evolution of AuSe nanoalloys in Triton X-100 under UV-photoactivation. , 2004, Chemical communications.

[101]  Younan Xia,et al.  Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. , 2010, Journal of the American Chemical Society.

[102]  A. Ennaoui,et al.  Iron sulphide solar cells , 1984 .

[103]  Chemical Synthesis, Self‐Assembly and Applications of Magnetic Nanoparticles , 2010 .

[104]  Xiaogang Peng,et al.  Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. , 2003, Journal of the American Chemical Society.

[105]  Frank E. Osterloh,et al.  A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants , 2004 .

[106]  Hui Zhang,et al.  Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. , 2012, Angewandte Chemie.

[107]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[108]  A Paul Alivisatos,et al.  Vacancy coalescence during oxidation of iron nanoparticles. , 2007, Journal of the American Chemical Society.

[109]  Hubert Kaeslin,et al.  Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication , 2008 .

[110]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[111]  Ajay Kumar Gupta,et al.  Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. , 2007, Nanomedicine.

[112]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[113]  Carsten Sönnichsen,et al.  Plasmon resonances in large noble-metal clusters , 2002 .

[114]  Younan Xia,et al.  Monodispersed spherical colloids of Se@CdSe: synthesis and use as building blocks in fabricating photonic crystals. , 2005, Nano letters.

[115]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[116]  Joel Waldfogel,et al.  Introduction , 2010, Inf. Econ. Policy.

[117]  Shouheng Sun,et al.  Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. , 2005, Nano letters.

[118]  M. D. Banus Pressure Dependence of the Alpha-Beta Transition Temperature in Silver Selenide , 1965, Science.

[119]  J. C. Brice,et al.  The Growth of Crystals from Liquids , 1974 .

[120]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[121]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[122]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[123]  H. Mao,et al.  Magnetic transition and sound velocities of Fe3S at high pressure: implications for Earth and planetary cores , 2004 .

[124]  U. Stimming,et al.  Infrared spectroscopic study of CO adsorption and electro-oxidation on carbon-supported Pt nanoparticles: Interparticle versus intraparticle heterogeneity , 2004 .

[125]  Christopher B. Murray,et al.  Compositionally controlled FePt nanoparticle materials , 2001 .

[126]  A. Fert,et al.  Controlled normal and inverse current-induced magnetization switching and magnetoresistance in magnetic nanopillars. , 2004, Physical review letters.

[127]  Uri Banin,et al.  Colloidal hybrid nanostructures: a new type of functional materials. , 2010, Angewandte Chemie.

[128]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[129]  J. Melinger,et al.  Ultrafast Dynamics of Gold-Based Nanocomposite Materials† , 2003 .

[130]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[131]  A. W. Wills,et al.  Electronic impurity doping in CdSe nanocrystals. , 2012, Nano letters.

[132]  A. Moser,et al.  Thermal effect limits in ultrahigh-density magnetic recording , 1999 .

[133]  Silvija Gradecak,et al.  General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. , 2005, Nano letters.

[134]  Paul Mulvaney,et al.  Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions† , 2001 .

[135]  G. H. Reed,et al.  Human ferredoxin: overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron-sulfur cluster ligand cysteine-to-serine mutants. , 1996, Biochemistry.

[136]  W. Green,et al.  Detailed Kinetic Modeling of Iron Nanoparticle Synthesis from the Decomposition of Fe(CO)5 , 2007 .

[137]  G. Subías,et al.  The Verwey transition: a new perspective , 2004 .

[138]  G. Bastard,et al.  Superlattice band structure in the envelope-function approximation , 1981 .

[139]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[140]  Milton Kerker,et al.  Scattering of Electromagnetic Waves from Two Concentric Spheres , 1951 .

[141]  U. Banin,et al.  Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. , 2009, Journal of the American Chemical Society.

[142]  U. Gösele,et al.  Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. , 2008, Nano letters.

[143]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[144]  H. R. Chandrasekhar,et al.  Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition , 2000 .

[145]  R. Frankel,et al.  Synthetic analogues of the active sites of iron-sulfur proteins. , 1976, Chemical reviews.

[146]  R. Schaller,et al.  Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals , 2005 .

[147]  R. E. Schaak,et al.  A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. , 2011, Nature chemistry.

[148]  Chang Q. Sun,et al.  Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom , 2002 .

[149]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[150]  J. Ding,et al.  Highly textured, magnetic Fe(1+x)S nanorods grown on silicon , 2007 .

[151]  Michele Penza,et al.  Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters , 2007 .

[152]  C. Liebske,et al.  Mars: A New Core-Crystallization Regime , 2007, Science.

[153]  Bing Xu,et al.  Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[154]  Peidong Yang,et al.  Morphological control of catalytically active platinum nanocrystals. , 2006, Angewandte Chemie.

[155]  D. Farrell,et al.  Preparation and Characterization of Monodisperse Fe Nanoparticles , 2003 .

[156]  A. Shirinyan,et al.  Phase separation in nanoparticles , 2004 .

[157]  T. Kikegawa,et al.  Phase relationships of the Fe–FeS system in conditions up to the Earth's outer core , 2010 .

[158]  M. Ouyang,et al.  Tailoring light–matter–spin interactions in colloidal hetero-nanostructures , 2010, Nature.

[159]  A. Ritchie,et al.  Lithium-ion/iron sulphide rechargeable batteries , 2004 .

[160]  A. P. Alivisatos,et al.  Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods , 2001 .

[161]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[162]  M. Nath,et al.  Synthesis and Characterization of Magnetic Iron Sulfide Nanowires , 2003 .

[163]  É. Duguet,et al.  Hybrid Dissymmetrical Colloidal Particles , 2005 .

[164]  N. Lewis An Analysis of Charge Transfer Rate Constants for Semiconductor/Liquid Interfaces , 1991 .

[165]  Jin Zhai,et al.  Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. , 2004, Journal of the American Chemical Society.

[166]  Louis E. Brus,et al.  Charge, Polarizability, and Photoionization of Single Semiconductor Nanocrystals , 1999 .

[167]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[168]  A. Alivisatos,et al.  Symmetry of Annealed Wurtzite CdSe Nanocrystals: Assignment to the C3v Point Group , 1995 .

[169]  D. Warrington THE COINCIDENCE SITE LATTICE (CSL) AND GRAIN BOUNDARY (DSC) DISLOCATIONS FOR THE HEXAGONAL LATTICE , 1975 .

[170]  Uri Banin,et al.  Growth of Photocatalytic CdSe–Pt Nanorods and Nanonets , 2008 .

[171]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[172]  Victor I. Klimov,et al.  Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties , 2007 .

[173]  T. Yao,et al.  p‐type CdSe grown by molecular beam epitaxy using a nitrogen plasma source , 1994 .

[174]  Andrew A. Burns,et al.  Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology. , 2006, Chemical Society reviews.

[175]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[176]  Y. Sung,et al.  Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. , 2010, Chemical communications.

[177]  Haibo Zeng,et al.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors , 2009, Sensors.

[178]  O. Cayre,et al.  Supraparticles and “Janus” Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique , 2004 .

[179]  Y. Fei,et al.  High-Pressure Iron-Sulfur Compound, Fe3S2, and Melting Relations in the Fe-FeS System , 1997, Science.

[180]  Louis E. Brus,et al.  The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") , 1990 .

[181]  Zhi Wei Seh,et al.  Janus Au‐TiO2 Photocatalysts with Strong Localization of Plasmonic Near‐Fields for Efficient Visible‐Light Hydrogen Generation , 2012, Advanced materials.

[182]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[183]  A. Rogach,et al.  Colloidal Synthesis and Self‐Assembly of CoPt3 Nanocrystals. , 2002 .

[184]  Claude R. Henry,et al.  Surface studies of supported model catalysts , 1998 .

[185]  E. Savinova,et al.  Model approach to evaluate particle size effects in electrocatalysis: preparation and properties of Pt nanoparticles supported on GC and HOPG , 2003 .

[186]  Catherine Higgitt,et al.  The Lycurgus Cup — A Roman nanotechnology , 2007 .

[187]  G. Shen,et al.  Thermal equation of state of Fe3S and implications for sulfur in Earth's core , 2006 .

[188]  E. Wang,et al.  Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors , 2011 .

[189]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[190]  R. Murray Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores , 2008 .

[191]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[192]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[193]  V. V. Hoang Molecular dynamics simulation of liquid and amorphous Fe nanoparticles , 2009, Nanotechnology.

[194]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[195]  Jianfang Wang,et al.  Shape- and size-dependent refractive index sensitivity of gold nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[196]  Y. Yamauchi,et al.  Block copolymer mediated synthesis of dendritic platinum nanoparticles. , 2009, Journal of the American Chemical Society.

[197]  Jin Xie,et al.  Synthesis and stabilization of monodisperse Fe nanoparticles. , 2006, Journal of the American Chemical Society.

[198]  K. Inomata,et al.  Effect of large boron additions to magnetically hard Fe‐Pt alloys , 1988 .

[199]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[200]  Y. Fei,et al.  Structure type and bulk modulus of Fe3S, a new iron-sulfur compound , 2000 .

[201]  T. Sum,et al.  Engineering fluorescence in Au-tipped, CdSe-seeded CdS nanoheterostructures. , 2011, Small.

[202]  Douglas Natelson,et al.  Electrically driven phase transition in magnetite nanostructures. , 2007, Nature materials.

[203]  J. Kohlbrecher,et al.  Structural and magnetic properties of amorphous iron oxide , 2010 .

[204]  L. Kish End of Moore's law: thermal (noise) death of integration in micro and nano electronics , 2002 .

[205]  Catherine J. Murphy,et al.  Solution-Phase Synthesis of Sub-10 nm Au−Ag Alloy Nanoparticles , 2002 .

[206]  A. Henglein,et al.  Absorption Spectrum and Some Chemical Reactions of Colloidal Platinum in Aqueous Solution , 1995 .

[207]  Scott L. Cumberland,et al.  Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials , 2002 .

[208]  E. Fanizza,et al.  Role of Metal Nanoparticles in TiO2/Ag Nanocomposite-Based Microheterogeneous Photocatalysis , 2004 .

[209]  Tymish Y. Ohulchanskyy,et al.  A general approach to binary and ternary hybrid nanocrystals. , 2006, Nano letters.

[210]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[211]  Steven G. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[212]  A. Ennaoui,et al.  Photoactive Synthetic Polycrystalline Pyrite ( FeS2 ) , 1985 .

[213]  M. Ouyang,et al.  Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches , 2010, Science.

[214]  Yun Tang,et al.  Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. , 2007, Nature materials.

[215]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[216]  L. Sunderlin,et al.  Metal (iron and nickel) carbonyl bond strengths in Fe(CO)n- and Ni(CO)n- , 1992 .

[217]  Chengguo Jia,et al.  Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices , 2014 .

[218]  L. Liz‐Marzán,et al.  Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .

[219]  Kun Li,et al.  Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. , 2012, Journal of the American Chemical Society.

[220]  J. Lahann,et al.  Anisotropic hybrid particles based on electrohydrodynamic co-jetting of nanoparticle suspensions. , 2010, Physical chemistry chemical physics : PCCP.

[221]  G. Kennedy,et al.  The effect of pressure on the eutectic in the system Fe-FeS , 1973 .

[222]  Dingsheng Wang,et al.  One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. , 2010, Journal of the American Chemical Society.

[223]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[224]  Avelino Corma,et al.  Titania supported gold nanoparticles as photocatalyst. , 2011, Physical chemistry chemical physics : PCCP.

[225]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[226]  A. C. Hunter,et al.  Nanomedicine: current status and future prospects , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.