Spontaneously Grown Boehmite Structures Improve Pool Boiling Heat Transfer on Aluminium Surfaces

[1]  Z. Wen,et al.  Enhanced pool boiling on microstructured surfaces with spatially-controlled mixed wettability , 2022, International Journal of Heat and Mass Transfer.

[2]  P. Cheng,et al.  Boiling crisis due to bubble interactions , 2022, International Journal of Heat and Mass Transfer.

[3]  Deepak Kumar Sharma,et al.  Review of pool and flow boiling heat transfer enhancement through surface modification , 2021, International Journal of Heat and Mass Transfer.

[4]  S. Mukherjee,et al.  Superhydrophilic metal-organic framework thin film for enhancing capillary-driven boiling heat transfer , 2021, Journal of Materials Chemistry A.

[5]  Xiaoxiao Ma,et al.  The synergetic effects of the surface wettability and the patterned nanostructure on boiling heat transfer enhancement , 2021 .

[6]  D. Chun,et al.  Green manufacturing of extreme wettability contrast surfaces with superhydrophilic and superhydrophobic patterns on aluminum , 2021 .

[7]  T. Karabacak,et al.  Enhancing the antibacterial efficacy of aluminum foil by nanostructuring its surface using hot water treatment , 2021, Nanotechnology.

[8]  Guang Yang,et al.  Recent advances in the optimization of evaporator wicks of vapor chambers: From mechanism to fabrication technologies , 2021 .

[9]  Renkun Chen,et al.  Boiling with ultralow superheat using confined liquid film , 2021 .

[10]  I. Dincer,et al.  A Review of Unique Aluminum–Water Based Hydrogen Production Options , 2021 .

[11]  H. Arora,et al.  Sustainable approach for the development of durable superhydrophobic metallic surfaces , 2020 .

[12]  Sami G. Al‐Ghamdi,et al.  Performance evaluation of self-cooling concentrating photovoltaics systems using nucleate boiling heat transfer , 2020 .

[13]  S. Suresh,et al.  A review on the role of laser textured surfaces on boiling heat transfer , 2020, Applied Thermal Engineering.

[14]  Jinjia Wei,et al.  Pool boiling heat transfer on silicon chips with non-uniform micro-pillars , 2020 .

[15]  D. Fadda,et al.  Development of a stable Boehmite layer on aluminum surfaces for improved pool boiling heat transfer in water , 2019, Applied Thermal Engineering.

[16]  Jason Fischman,et al.  Hydrogen production from aluminum-water reactions subject to varied pressures and temperatures , 2019, International Journal of Hydrogen Energy.

[17]  Jinjia Wei,et al.  A Study on Enhancement of Boiling Heat Transfer by Mixed-Wettability Surface , 2018 .

[18]  S. Suresh,et al.  Modified surfaces using seamless graphene/carbon nanotubes based nanostructures for enhancing pool boiling heat transfer , 2018, Experimental Thermal and Fluid Science.

[19]  S. Suresh,et al.  Role of inter-nanowire distance in metal nanowires on pool boiling heat transfer characteristics. , 2018, Journal of Colloid and Interface Science.

[20]  D. Chun,et al.  Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing , 2018 .

[21]  R. Pastuszko Pool boiling heat transfer on micro-fins with wire mesh – Experiments and heat flux prediction , 2018 .

[22]  T. Karabacak,et al.  Metal oxide nanostructures by a simple hot water treatment , 2017, Scientific Reports.

[23]  Weiqi Wang,et al.  Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays , 2017 .

[24]  A. V. Ilyukhina,et al.  Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction , 2017 .

[25]  S. Jun,et al.  Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface , 2016 .

[26]  S. Iijima,et al.  One-dimensional nanowires of pseudoboehmite (aluminum oxyhydroxide γ-AlOOH) , 2016, Proceedings of the National Academy of Sciences.

[27]  Yong Tang,et al.  Pool boiling heat transfer of porous structures with reentrant cavities , 2016 .

[28]  P. Cortona,et al.  Semiclassical atom theory applied to solid-state physics , 2016, 1601.06494.

[29]  Ho Seon Ahn,et al.  Review of boiling heat transfer enhancement on micro/nanostructured surfaces , 2015 .

[30]  M. Kim,et al.  Boiling on spatially controlled heterogeneous surfaces: Wettability patterns on microstructures , 2015 .

[31]  Xuetong Zhao,et al.  Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface , 2015 .

[32]  Ji Min Kim,et al.  Effect of a graphene oxide coating layer on critical heat flux enhancement under pool boiling , 2014 .

[33]  H. Cho,et al.  Stable and uniform heat dissipation by nucleate-catalytic nanowires for boiling heat transfer , 2014 .

[34]  P. R. Underhill,et al.  Hydrated oxide film growth on aluminium alloys immersed in warm water , 2005 .

[35]  M. Courty,et al.  Structure and thermal behavior of nanocrystalline boehmite , 2005 .

[36]  R. Webb,et al.  Long-term wetting and corrosion characteristics of hot water treated aluminum and copper fin stocks , 2002 .

[37]  P. Sherwood,et al.  Boehmite (γ-AlOOH) by XPS , 1998 .

[38]  B. Strohmeier Gamma‐Alumina (γ‐Al2O3) by XPS , 1994 .

[39]  G. Perumal,et al.  Green manufacturing of nanostructured Al-Based sustainable self-cleaning metallic surfaces , 2021 .

[40]  K. Wefers,et al.  Oxides and Hydroxides of Aluminum , 2003 .