Artificially layered heteropolytypic structures based on SiC polytypes: molecular beam epitaxy, characterization and properties

Abstract In recent years, new types of semiconductor heterostructures consisting of only one material in different crystal structures, such as wurtzite/zinc-blende heterostructures (heteropolytypic structures) are under discussion. Such heterostructures maintain a completely defect-free, lattice matched, and coherent interface and effects due to different chemical constituents can be avoided. In this field, silicon carbide (SiC) is the most promising candidate because SiC crystallizes in more than two different stable structures. The preparation of heteropolytypic structures by only a change of the crystal structure during the growth is a great challenge and is realized only under well-defined conditions of molecular beam epitaxy (MBE). In this paper an overview is given of the results and conclusions of recent material research on the MBE growth, characterization and properties of SiC heteropolytypic structures and related materials.

[1]  Friedhelm Bechstedt,et al.  Polytypism and Properties of Silicon Carbide , 1997 .

[2]  R. Davis,et al.  X-ray photoelectron diffraction from (3×3) and (√3×√3)R 30° (0001)Si 6H–SiC surfaces , 1998 .

[3]  C. E. Ryan,et al.  The discovery of a 2H-3C solid state transformation in silicon carbide single crystals , 1971 .

[4]  M. Naitoh,et al.  A (23×213) surface phase in the 6H–SiC(0001) surface studied by scanning tunneling microscopy , 1999 .

[5]  H. Brune Microscopic view of epitaxial metal growth: nucleation and aggregation , 1998 .

[6]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[7]  B. Schröter,et al.  Mechanisms of homo- and heteroepitaxial growth of SiC on α-SiC(0001) by solid-source molecular beam epitaxy , 1999 .

[8]  K. Kojima,et al.  Effect of hydrogen etching on 6H SiC surface morphology studied by reflection high-energy positron diffraction and atomic force microscopy , 2000 .

[9]  C. Matthai,et al.  Computer simulation of adatom dynamics on single-stepped SiC(001) surfaces , 1998 .

[10]  G. Hashiguchi,et al.  Rheed intensity oscillations during silicon MBE growth , 1986 .

[11]  W. Tsang Low‐current‐threshold and high‐lasing uniformity GaAs–AlxGa1−xAs double‐heterostructure lasers grown by molecular beam epitaxy , 1979 .

[12]  W. J. Choyke,et al.  DII Revisited in an Modern Guise - 6H and 4H SiC , 1997 .

[13]  B. Bullemer,et al.  Stepped morphology on 4H and 15R silicon carbide: modelling by a random walk , 1995 .

[14]  Christer Hallin,et al.  The mechanism for cubic SiC formation on off-oriented substrates , 1997 .

[15]  M. Allendorf,et al.  The adsorption of H-atoms on polycrystalline β-silicon carbide , 1991 .

[16]  A. Bauer,et al.  Lattice Parameter Measurements of 3C-SiC Thin Films Grown on 6H-SiC(0001) Substrate Crystals , 2001 .

[17]  Reuter,et al.  Surfactants in epitaxial growth. , 1989, Physical review letters.

[18]  P. Lanig,et al.  Control of polytype formation by surface energy effects during the growth of SiC monocrystals by the sublimation method , 1993 .

[19]  W. Richter,et al.  RHEED investigations of MBE-growth kinetics of Si on Si(111) and SiC on SiC(100) , 1997 .

[20]  T. Nishinaga,et al.  Macrostep formation and growth condition dependence in MBE of GaAs on GaAs (1 1 1)B vicinal surface , 1999 .

[21]  Nakashima,et al.  Raman scattering determination of structures for SiC polytypes: Quantitative evaluation with a revised model of lattice dynamics. , 1989, Physical review. B, Condensed matter.

[22]  G. Pensl,et al.  Dependence of the aluminium ionization energy on doping concentration and compensation in 6H-SiC , 1996 .

[23]  T. Frauenheim,et al.  Metastability of the Neutral Silicon Vacancy in 4H-SiC , 2000 .

[24]  M. Henini,et al.  Properties of strained and relaxed silicon germanium , 1996 .

[25]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .

[26]  A. Henry,et al.  Properties of the D 1 bound exciton in 4 H − SiC , 1999 .

[27]  R. Davis Recent Advances Regarding the Definition of the Atomic Environment, Film Growth and Microelectronic Device Development in Silicon Carbide , 1990 .

[28]  Mary Ellen Zvanut,et al.  Characterization of paramagnetic defect centers in three polytypes of dry heat treated, oxidized SiC , 2000 .

[29]  V. Tsvetkov,et al.  Scanning tunnelling microscopy on the 6H SiC(0001) surface , 1994 .

[30]  V. Tsvetkov,et al.  Crystal Growth and Polytypism in Silicon Carbide , 1986 .

[31]  Richard L. Schwoebel,et al.  Step Motion on Crystal Surfaces. II , 1966 .

[32]  R. Marshall,et al.  The structure, perfection and annealing behaviour of SiC needles grown by a VLS mechanism , 1971 .

[33]  N. Kuznetsov,et al.  Deep centers and electroluminescence in 4HSiC diodes with a p-type base region , 1995 .

[34]  W. Richter,et al.  MBE growth of Si on SiC(0001): from superstructures to islands , 2001 .

[35]  I. Markov,et al.  Influence of the supersaturation on the mode of thin film growth , 1976 .

[36]  Wen-Tai Lin,et al.  Localized epitaxial growth of hexagonal and cubic SiC films on Si by vacuum annealing , 1996 .

[37]  Robert F. Davis,et al.  Chemical vapor deposition and characterization of 6H‐SiC thin films on off‐axis 6H‐SiC substrates , 1988 .

[38]  Bechstedt,et al.  Influence of polytypism on thermal properties of silicon carbide. , 1996, Physical review. B, Condensed matter.

[39]  R. P. Burns,et al.  Mass Spectrometric Study of Carbon Vapor , 1959 .

[40]  M. Konagai,et al.  Atomic layer epitaxial growth of ZnSe, ZnTe, and ZnSe-ZnTe strained-layer superlattices , 1989 .

[41]  H. Sitter,et al.  Atomic‐layer epitaxy of (111)CdTe on BaF2 substrates , 1988 .

[42]  M. Schulz,et al.  Fast computer-controlled deep level transient spectroscopy system for versatile applications in semiconductors , 1986 .

[43]  B. Schröter,et al.  Epitaxial growth of SiC thin films on Si-stabilized α-SiC(0001) at low temperatures by solid-source molecular beam epitaxy , 1995 .

[44]  A. Addamiano,et al.  Stabilization of cubic silicon carbide , 1965 .

[45]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[46]  J. A. Powell,et al.  White-beam synchrotron topographic analysis of multi-polytype SiC device configurations , 1995 .

[47]  S. Öberg,et al.  Localized electronic states around stacking faults in silicon carbide , 2001 .

[48]  Gennady Gildenblat,et al.  Diamond, Sic and Nitride Wide Bandgap Semiconductors: Symposium Held April 4-8, 1994, San Francisco, California, U.S.A. , 1994 .

[49]  A. Ellison,et al.  In situ substrate preparation for high-quality SiC chemical vapour deposition , 1997 .

[50]  R. Davis,et al.  Vicinal and on-axis surfaces of 6H-SiC(0001) thin films observed by scanning tunneling microscopy , 1996 .

[51]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[52]  S. Lilov,et al.  Structural and morphological peculiarities of the epitaxial layers and monocrystals of silicon carbide highly doped by nitrogen , 1976 .

[53]  Eaglesham,et al.  Influence of surface reconstruction on the orientation of homoepitaxial silicon films. , 1990, Physical review letters.

[54]  Salah M. Bedair,et al.  Atomic layer epitaxy of III‐V binary compounds , 1985 .

[55]  V. D. Heydemann,et al.  Growth of 6H and 4H silicon carbide single crystals by the modified Lely process utilizing a dual‐seed crystal method , 1996 .

[56]  W. Richter,et al.  Investigations of Stranski-Krastanov growth kinetics of Si-dots on 6H-SiC(0001) , 1997 .

[57]  U. Starke,et al.  Holographic Image Reconstruction from Electron Diffraction Intensities of Ordered Superstructures , 1997 .

[58]  J. Neugebauer,et al.  Theory of the adatom-induced reconstruction of the SiC(0001)√3×√3 surface , 1995 .

[59]  Richard J. Needs,et al.  The Preference of Silicon Carbide for Growth in the Metastable Cubic Form , 1991 .

[60]  K. Merz,et al.  Synthesis and crystallography of the wurtzite form of silicon carbide , 1959 .

[61]  Lianxi Zheng,et al.  Anisotropic Step-Flow Growth and Island Growth of GaN(0001) by Molecular Beam Epitaxy , 1999 .

[62]  H. Nagasawa,et al.  Atomic level epitaxy of 3C-SiC by low pressure vapour deposition with alternating gas supply , 1993 .

[63]  H. Brandes Zur Theorie des Kristallwachstums , 1927 .

[64]  Brauer,et al.  Evaluation of some basic positron-related characteristics of SiC. , 1996, Physical review. B, Condensed matter.

[65]  Laurent Simon,et al.  X-ray photoelectron characterization of 6H-SiC(0001) , 1999 .

[66]  H. Matsunami,et al.  Nucleation and step motion in chemical vapor deposition of SiC on 6H‐SiC{0001} faces , 1994 .

[67]  C. Wood,et al.  A pragmatic approach to adatom‐induced surface reconstruction of III‐V compounds , 1983 .

[68]  J. Schneider,et al.  Point defects in silicon carbide , 1993 .

[69]  A. Ellison,et al.  High temperature chemical vapor deposition of SiC , 1996 .

[70]  Snyder,et al.  Kinetically controlled critical thickness for coherent islanding and thick highly strained pseudomorphic films of InxGa1-xAs on GaAs(100). , 1992, Physical review. B, Condensed matter.

[71]  D. A. Berlincourt,et al.  Polar Properties of BeO Single Crystals , 1963 .

[72]  H. Takei,et al.  Formation of Cubic SiC Crystals by Gas-Phase Reaction , 1989 .

[73]  J. Powell,et al.  Low‐Temperature Solid‐State Phase Transformations in 2H Silicon Carbide , 1972 .

[74]  R. Helbig,et al.  Low temperature photoluminescence measurements on boron- and hydrogen-implanted 6H–SiC , 1997 .

[75]  H. Matsunami,et al.  Solid-State Phase Transformation in Cubic Silicon Carbide , 1991 .

[76]  P. Badziag A new carbon rich model of the α-SiC(0001) 3× 3 surface reconstruction , 1998 .

[77]  R. Davis,et al.  Scanning tunneling microscopy and spectroscopy of cubic β-SiC(111) surfaces , 1991 .

[78]  B. Welch The structure , 1992 .

[79]  H. Matsunami,et al.  Growth mechanism of 6H-SiC in step-controlled epitaxy , 1993 .

[80]  Woo Sik Yoo,et al.  Heteroepitaxial growth of β'-SiC films on TiC substrates: Interface structures and defects , 1994 .

[81]  A. Baldereschi,et al.  Band discontinuities in zinc-blende and wurtzite AlN/SiC heterostructures , 1997 .

[82]  J. Bluet,et al.  Enlargement of SiC Crystals: Defect Formation at the Interfaces , 1997 .

[83]  W. J. Choyke,et al.  Photoluminescence of Radiation Defects in Ion-Implanted 6 H SiC , 1972 .

[84]  V. Tsvetkov,et al.  Investigation of phase transformations and polytype stability of ß‐SiC , 1977 .

[85]  D. G. Thomas,et al.  Kinetics of Radiative Recombination at Randomly Distributed Donors and Acceptors , 1965 .

[86]  Richard A. Soref,et al.  Silicon‐based group IV heterostructures for optoelectronic applications , 1996 .

[87]  S. Froyen,et al.  Electronic band structures for zinc-blende and wurtzite CdS , 1983 .

[88]  R. Helbig,et al.  SiC: Polar properties and their influence on technology and devices , 1999 .

[89]  J. Palmour,et al.  Dry etching of β‐SiC in CF4 and CF4+O2 mixtures , 1986 .

[90]  F. Frank Nucleation-controlled growth on a one-dimensional growth of finite length , 1974 .

[91]  W. J. Choyke,et al.  Raman Scattering in 6H SiC , 1968 .

[92]  H. Mitlehner,et al.  SiC devices: physics and numerical simulation , 1994 .

[93]  M. Panish Molecular-beam epitaxy , 1989, AT&T Technical Journal.

[94]  G. Jessen,et al.  4H- to 3C-SiC Polytypic Transformation during Oxidation , 2002 .

[95]  M. Shur,et al.  Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide , 1991, Proc. IEEE.

[96]  B. Schröter,et al.  Improved Epitaxy of Cubic SiC Thin Films on Si(111) by Solid-Source MBE , 1997 .

[97]  Bechstedt,et al.  Heterocrystalline structures: New types of superlattices? , 1995, Physical review letters.

[98]  Tatarenko,et al.  Surface stoichiometry determination using reflection high-energy electron diffraction and atomic-layer epitaxy: The case of ZnTe(100). , 1995, Physical review. B, Condensed matter.

[99]  W. J. Choyke,et al.  Anisotropy of the electron Hall mobility in 4H, 6H, and 15R silicon carbide , 1994 .

[100]  T. Page Silicon Carbide: Structure and Polytypic Transformations , 1990 .

[101]  N. Ohtani,et al.  Sublimation growth of 6H- and 4H-SiC single crystals in the [11¯0 0] and [1 12¯0] directions , 1997 .

[102]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[103]  F. Bechstedt,et al.  Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations. , 1994, Physical review. B, Condensed matter.

[104]  N. Ōtsuka,et al.  Two‐dimensional metastable magnetic semiconductor structures , 1986 .

[105]  Philip I Cohen,et al.  Damped oscillations in reflection high energy electron diffraction during GaAs MBE , 1983 .

[106]  W. Suttrop,et al.  Nitrogen donors in 4H‐silicon carbide , 1993 .

[107]  M. Kawashima,et al.  Migration-Enhanced Epitaxy of GaAs and AlGaAs , 1988 .

[108]  J. Bergman,et al.  Deep level defects in electron-irradiated 4H SiC epitaxial layers , 1997 .

[109]  J. R. Arthur Interaction of Ga and As2 Molecular Beams with GaAs Surfaces , 1968 .

[110]  I. Markov,et al.  Influence of supersaturation on the mode of crystallization on crystalline substrates , 1976 .

[111]  M. Melloch,et al.  Ionization Energies and Electron Mobilities in Phosphorus- and Nitrogen-Implanted 4H-Silicon Carbide , 2000 .

[112]  Wolfgang J. Choyke,et al.  Electrical and Optical Characterization of SiC , 1993 .

[113]  N. Teraguchi,et al.  Formation of periodic steps with a unit-cell height on 6H-SiC (0001) surface by HCl etching , 2000 .

[114]  Y. Kumagai,et al.  Growth Temperature Dependence of Boron Surface Segregation and Electrical Properties of Boron Delta-Doped Structures Grown by Si Molecular Beam Epitaxy , 1995 .

[115]  A. Roenkov,et al.  Epitaxial growth of silicon carbide layers by sublimation „sandwich method”︁ (I) growth kinetics in vacuum , 1979 .

[116]  A. Fissel,et al.  MBE growth of quantum-size Si-dots on SiC(0001) monitored by RHEED , 1998 .

[117]  J. Wigmore,et al.  Enhanced evaporation from a highly strained Si crystal surface , 2000 .

[118]  I. Eisele,et al.  Delta-type doping profiles in silicon , 1989 .

[119]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[120]  G. H. Nancollas,et al.  Kink densities along a crystal surface step at low temperatures and under nonequilibrium conditions , 1990 .

[121]  V. Bermudez Adsorption and co-adsorption of boron and oxygen on ordered α-SiC surfaces , 1995 .

[122]  R. Davis,et al.  Layer-by-layer growth of SiC at low temperatures , 1993 .

[123]  T. Argunova,et al.  ( 3 × 3 ) R 30 ° reconstruction of the 6 H − SiC (0001) surface: A simple T 4 Si adatom structure solved by grazing-incidence x-ray diffraction , 1999 .

[124]  J.-M. Themlin,et al.  HETEROEPITAXIAL GRAPHITE ON 6H-SIC(0001): INTERFACE FORMATION THROUGH CONDUCTION-BAND ELECTRONIC STRUCTURE , 1998 .

[125]  K. Shiraishi,et al.  GA-ADATOM-INDUCED AS REARRANGEMENT DURING GAAS EPITAXIAL GROWTH : SELF-SURFACTANT EFFECT , 1998 .

[126]  L. Feldman,et al.  Stability of boron- and gallium-induced surface structures on Si(111) during deposition and epitaxial growth of silicon , 1989 .

[127]  E. Wang,et al.  SYSTEMATIC STUDY OF BETA -SIC SURFACE STRUCTURES BY MOLECULAR-DYNAMICS SIMULATIONS , 1998 .

[128]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[129]  E. H. C. Parker,et al.  The Technology and physics of molecular beam epitaxy , 1985 .

[130]  F. Bechstedt,et al.  On the nature of the D1-defect center in SiC: A photoluminescence study of layers grown by solid-source molecular-beam epitaxy , 2001 .

[131]  Ke,et al.  Electronic structures and band offsets of heterocrystalline superlattices (3C-AlN)3n/(2H-AlN)2n and (3C-SiC)3n/(2H-SiC)2n (n=1,2,3). , 1996, Physical review. B, Condensed matter.

[132]  W. Mönch,et al.  Dynamical properties of 3C-, 4H-, and 6HSiC surfaces , 1998 .

[133]  F. Bechstedt,et al.  Native defects and complexes in SiC , 2001 .

[134]  R. Davis Deposition and characterization of diamond, silicon carbide and gallium nitride thin films , 1994 .

[135]  M. Lagally,et al.  Scanning tunneling microscopy study of diffusion, growth, and coarsening of Si on Si(001) , 1990 .

[136]  Herbert A. Will,et al.  Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices , 1983 .

[137]  K. Ploog,et al.  ORIGIN OF ELECTRON DIFFRACTION OSCILLATIONS DURING CRYSTAL GROWTH , 1998 .

[138]  W. J. Choyke,et al.  Optical Properties of Cubic SiC: Luminescence of Nitrogen-Exciton Complexes, and Interband Absorption , 1963 .

[139]  Inspec,et al.  Properties of silicon carbide , 1995 .

[140]  Tsunenobu Kimoto,et al.  Step bunching mechanism in chemical vapor deposition of 6H– and 4H–SiC{0001} , 1997 .

[141]  Clarke,et al.  Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: A computational modeling approach. , 1987, Physical review letters.

[142]  M. Anikin,et al.  Temperature gradient controlled SiC crystal growth , 1997 .

[143]  A. Fissel Relationship between growth conditions, thermodynamic properties and crystal structure of SiC , 2001 .

[144]  B. Schröter,et al.  Hexagonal and cubic SiC thin films on SiC deposited by solid source MBE , 1997 .

[145]  A. Lebedev Influence of native defects on polytypism in SiC , 1999 .

[146]  W. Tiller,et al.  Adsorption, potential maps and diffusion of Si, C, and SiC on a Si(111) surface , 1985 .

[147]  R. Bradt,et al.  Thermal expansion and thermal expansion anisotropy of SiC polytypes , 1987 .

[148]  M. Lampert Mobile and Immobile Effective-Mass-Particle Complexes in Nonmetallic Solids , 1958 .

[149]  A. Rouault,et al.  Study of SiC single-crystal sublimation growth conditions , 1995 .

[150]  V. Ivantsov,et al.  High Quality 6H- and 4H-SiC pn Structures with Stable Electric Breakdown Grown by Liquid Phase Epitaxy , 1997 .

[151]  W. F. Egelhoff X-Ray photoelectron and auger electroo forward scattering: A new tool for surface crystallography , 1990 .

[152]  A. Lebedev Deep level centers in silicon carbide: A review , 1999 .

[153]  S. Kaneda,et al.  Low-temperature growth and its growth mechanisms of 3C-SiC crystal by gas source molecular beam epitaxial method , 1990 .

[154]  E. Schulson Electron channelling patterns in scanning electron microscopy , 1977 .

[155]  Identification of {2110} and {10-10} Laue Patterns of Hexagonal and Rhombohedrai Silicon Carbide Polytypes , 1994 .

[156]  A. Henry,et al.  PHOTOLUMINESCENCE OF ELECTRON-IRRADIATED 4H-SIC , 1999 .

[157]  A. Latyshev,et al.  Reflection electron microscopy study of structural transformations on a clean silicon surface in sublimation, phase transition and homoepitaxy , 1990 .

[158]  H. Matsunami,et al.  Single crystal growth of hexagonal SiC on cubic SiC by intentional polytype control , 1990 .

[159]  M. Inghram,et al.  Investigation of the Heat of Vaporization of Carbon , 1953 .

[160]  G. Ehrlich Direct observations of the surface diffusion of atoms and clusters , 1990 .

[161]  T. Fuyuki,et al.  Atomic layer epitaxy of cubic SiC by gas source MBE using surface superstructure , 1989 .

[162]  S. Chambers,et al.  Elastic scattering and interference of backscattered primary, Auger and X-ray photoelectrons at high kinetic energy: principles and applications , 1992 .

[163]  A. Kingon,et al.  THERMODYNAMIC CALCULATIONS FOR THE CHEMICAL VAPOR DEPOSITION OF SILICON CARBIDE , 1983 .

[164]  I. Suemune,et al.  Atomic layer epitaxy of GaAs and role of As‐source materials on self‐limiting mechanism , 1992 .

[165]  H. J. Round A Note on Carborundum , 1991 .

[166]  J. Bergman,et al.  Luminescence from stacking faults in 4H SiC , 2001 .

[167]  A. D. Mesquita Polytypism in silicon carbide , 1968 .

[168]  M. Kozielski,et al.  Working Model for Explanation of Polytype formation Based on Superlattice Ordering of Point Defects in Close Packing Structures , 1995 .

[169]  Ivan V. Markov,et al.  Crystal growth for beginners , 1995 .

[170]  大野 茂,et al.  Polarization , 2006, A First Course in Laboratory Optics.

[171]  James S. Speck,et al.  HIGH MOBILITY TWO-DIMENSIONAL ELECTRON GAS IN ALGAN/GAN HETEROSTRUCTURES GROWN BY PLASMA-ASSISTED MOLECULAR BEAM EPITAXY , 1999 .

[172]  H. Baumhauer XII. Über die verschiedenen Modifikationen des Carborundums und die Erscheinung der Polytypie , 1915 .

[173]  T. Fuyuki,et al.  Atomic level control in gas source MBE growth of cubic SiC , 1990 .

[174]  A. Steckl,et al.  Residue‐free reactive ion etching of β‐SiC in CHF3/O2 with H2 additive , 1992 .

[175]  E. Kasper Growth kinetics of Si-molecular beam epitaxy , 1982 .

[176]  Y. Hasegawa,et al.  Two-step preparation of 6H–SiC(0001) surface for epitaxial growth of GaN thin film , 1999 .

[177]  B. Poelsema,et al.  New concepts for controlled homoepitaxy , 1995 .

[178]  M. Volmer,et al.  Keimbildung in übersättigten Gebilden , 1926 .

[179]  T. Kanayama,et al.  Inertness of SiC surfaces against Si atoms and clusters , 1999 .

[180]  Heine,et al.  Polarization, band lineups, and stability of SiC polytypes. , 1992, Physical review. B, Condensed matter.

[181]  Andrew J. Steckl,et al.  Reactive ion etching of SiC thin films using fluorinated gases , 1986 .

[182]  Tsunenobu Kimoto,et al.  Terrace growth and polytype development in epitaxial β-SiC films on α-SiC (6H and 15R) substrates , 1994 .

[183]  J. Venables,et al.  Nucleation, growth and the intermediate layer in Ag/Si(100) and Ag/Si(111) , 1984 .

[184]  W. J. Choyke,et al.  Photoluminescence and transport studies of boron in 4H SiC , 1998 .

[185]  B. Jiang,et al.  An examination of double positioning boundaries and interface misfit in beta‐SiC films on alpha‐SiC substrates , 1988 .

[186]  H. Morkoç,et al.  Low temperature growth of single-crystalline cubic SiC on Si(111) by solid source molecular beam epitaxy , 1993 .

[187]  G. Fischer Numerical data and functional relationships in science and technology , 1987 .

[188]  P. J. Dobson,et al.  Dynamics of film growth of GaAs by MBE from Rheed observations , 1983 .

[189]  S. R. Smith,et al.  Determination of the band offsets of the 4H–SiC/6H–SiC heterojunction using the vanadium donor (0/+) level as a reference , 1995 .

[190]  R. Denning Luminescence in Inorganic Solids , 1981 .

[191]  B. Joyce,et al.  Reflection high‐energy electron diffraction oscillations from vicinal surfaces—a new approach to surface diffusion measurements , 1985 .

[192]  U. Starke,et al.  NOVEL RECONSTRUCTION MECHANISM FOR DANGLING-BOND MINIMIZATION : COMBINED METHOD SURFACE STRUCTURE DETERMINATION OF SIC(111)-(3 X 3) , 1998 .

[193]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[194]  M. Willander,et al.  III–nitrides: Growth, characterization, and properties , 2000 .

[195]  F. Bechstedt,et al.  MBE growth and properties of SiC multi-quantum well structures , 2001 .

[196]  Jonas Hedström,et al.  Coevaporation with a rate control system based on a quadrupole mass spectrometer , 1985 .

[197]  U. Starke,et al.  STACKING TRANSFORMATION FROM HEXAGONAL TO CUBIC SIC INDUCED BY SURFACE RECONSTRUCTION : A SEED FOR HETEROSTRUCTURE GROWTH , 1999 .

[198]  Philip G. Neudeck,et al.  Site‐competition epitaxy for superior silicon carbide electronics , 1994 .

[199]  H. Matsunami,et al.  Surface diffusion lengths of adatoms on 6H‐SiC{0001} faces in chemical vapor deposition of SiC , 1995 .

[200]  R. Davis,et al.  Deposition and doping of silicon carbide by gas-source molecular beam epitaxy , 1997 .

[201]  H. Matsunami,et al.  Photoluminescence of homoepitaxial 3C-SiC on sublimation-grown 3C-SiC substrates , 1995 .

[202]  Albert-László Barabási,et al.  Self-assembled island formation in heteroepitaxial growth , 1997, cond-mat/9703252.

[203]  M. Aono,et al.  Evaluation of structural quality of a silicon carbide (6H‐SiC) single crystal grown by a vapor transport method by Rutherford backscattering spectroscopy , 1989 .

[204]  N. Ohtani,et al.  Evolution of macrosteps on 6H-SiC(0001): Impurity-induced morphological instability of step trains , 1999 .

[205]  V. Tsvetkov,et al.  General principles of growing large-size single crystals of various silicon carbide polytypes , 1981 .

[206]  Michael G. Spencer,et al.  Deep donor state of vanadium in cubic silicon carbide (3C‐SiC) , 1994 .

[207]  S. Kaneda,et al.  MBE growth of 3C·SiC/6·SiC and the electric properties of its p-n junction , 1987 .

[208]  T. Fuyuki,et al.  Lattice-matched epitaxial growth of single crystalline 3C-SiC on 6H-SiC substrates by gas source molecular beam epitaxy , 1992 .

[209]  S. Eisebitt,et al.  Electronic structure of silicon carbide polytypes studied by soft x-ray spectroscopy , 1999 .

[210]  I. Stranski,et al.  Über den Mechanismus des Gleichgewichtes kleiner Kriställchen , 1934 .

[211]  B. Schröter,et al.  Advances in the molecular-beam epitaxial growth of artificially layered heteropolytypic structures of SiC , 2000 .

[212]  J. E. Crombeen,et al.  LEED and Auger electron observations of the SiC(0001) surface , 1975 .

[213]  W. Stobbs,et al.  A transmission electron microscopy investigation of SiC films grown on Si(111) substrates by solid-source molecular beam epitaxy , 1998 .

[214]  N. Kobayashi,et al.  Growth and characterization of thin ZnSe/GaAs/ZnSe quantum wells , 1992 .

[215]  W. J. Choyke Optical and Electronic Properties of SiC , 1990 .

[216]  A. Bakin,et al.  The analysis of mass transfer in system β-SiC–α-SiC under silicon carbide sublimation growth , 1999 .

[217]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[218]  S. Babu,et al.  Reactive ion etching of monocrystalline, polycrystalline, and amorphous silicon carbide in CF4/O2 mixtures , 1991 .

[219]  A. Fissel Thermodynamic considerations of the epitaxial growth of SiC polytypes , 2000 .

[220]  W. Mönch,et al.  Phonons in 3C-, 4H-, and 6H-SiC , 1995 .

[221]  W. Tiller,et al.  Reconstruction and energetics for surfaces of silicon, diamond and β-SiC , 1985 .

[222]  D. Wolf,et al.  Equilibrium step dynamics on vicinal surfaces , 1993 .

[223]  W. J. Choyke,et al.  Localized vibrational modes of a persistent defect in ion-implanted SiC , 1973 .

[224]  R. J. Wagner,et al.  Electron cyclotron resonance in cubic SiC , 1985 .

[225]  H. Sitter,et al.  Short period CdTe-ZnTe and CdTe-MnTe superlattices , 1993 .

[226]  T. Hanada,et al.  Study of Si(111)3 × 3-Al surface structure by kinetic-energy dependence of polar-angle photoelectron diffraction , 1989 .

[227]  M. Inghram,et al.  Thermodynamic study of SiC utilizing a mass spectrometer , 1958 .

[228]  J. Weeks,et al.  Interactions between Fluctuating Steps on Vicinal Surfaces: Edge Energy Effects in Reconstruction Induced Faceting , 1997 .

[229]  Y. Aoyagi,et al.  Microscopic mechanisms of accurate layer-by-layer growth of β-SiC , 1993 .

[230]  R. Schwoebel Step motion on crystal surfaces , 1968 .

[231]  A. Fissel,et al.  MBE growth kinetics of Si on heavily-doped Si(111):P: a self-surfactant effect , 2000 .

[232]  Y. Makarov,et al.  Use of Ta‐Container for Sublimation Growth and Doping of SiC Bulk Crystals and Epitaxial Layers , 1997 .

[233]  H. Shinohara,et al.  Interaction of C60 with the (3×3) and (√3×√3) surfaces of 6H-SiC(0001): Adsorption, decomposition, and SiC growth , 1997 .

[234]  R. Davis,et al.  Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy , 1994 .

[235]  A. Cho,et al.  GaAs–Alx Ga1−x As double‐heterostructure lasers prepared by molecular‐beam epitaxy , 1974 .

[236]  W. J. Choyke,et al.  Penetration depths in the ultraviolet for 4H, 6H and 3C silicon carbide at seven common laser pumping wavelengths , 1999 .

[237]  Friedhelm Bechstedt,et al.  Towards Quantum Structures in SiC , 2002 .

[238]  H. Matsunami,et al.  Surface kinetics of adatoms in vapor phase epitaxial growth of SiC on 6H‐SiC{0001} vicinal surfaces , 1994 .

[239]  B. Schröter,et al.  Low‐temperature growth of SiC thin films on Si and 6H–SiC by solid‐source molecular beam epitaxy , 1995 .

[240]  Ch. Haberstroh,et al.  Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R) , 1994 .

[241]  B. Wilkens,et al.  Influence of 6H–SiC(0001) substrate surface morphology on the growth of AlN epitaxial layers , 1999 .

[242]  K. Günther Aufdampfschichten aus halbleitenden III–V-Verbindungen , 1958, Naturwissenschaften.

[243]  F. Bechstedt,et al.  Intravacancy transition energies in 3C- and 4H-SiC , 2000 .

[244]  L. Kubler,et al.  6H-SiC{0001} X-ray photoelectron diffraction characterization used for polarity determination , 1998 .

[245]  Robert J. Trew,et al.  The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications , 1991, Proc. IEEE.

[246]  Hadis Morkoç,et al.  Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy , 1996 .

[247]  S. G. Bishop,et al.  Optically detected magnetic resonance of cubic SiC grown by chemical vapor deposition on Si , 1990 .

[248]  W. J. Choyke,et al.  Refractive Index and Low-Frequency Dielectric Constant of 6H SiC , 1968 .

[249]  J. Venables Atomic processes in crystal growth , 1994 .

[250]  Nakashima,et al.  Relative Raman intensities of the folded modes in SiC polytypes. , 1986, Physical review. B, Condensed matter.

[251]  R. Kaplan Surface structure and composition of β- and 6H-SiC , 1989 .

[252]  G. Henn,et al.  SiC(0001)3×3-Si surface reconstruction : a new insight with a STM , 1996 .

[253]  R. Nieminen,et al.  Antisites in silicon carbide , 1998 .

[254]  Hiroki Hibino,et al.  Twinned epitaxial layers formed on Si(111)√3×√3-B , 1998 .

[255]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[256]  Iwan N. Stranski,et al.  Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander , 1937 .

[257]  Friedhelm Bechstedt,et al.  High-precision determination of atomic positions in crystals: The case of 6 H - and 4 H -SiC , 1998 .

[258]  W. J. Choyke,et al.  Low‐temperature photoluminescence studies of chemical‐vapor‐deposition‐grown 3C‐SiC on Si , 1988 .

[259]  P. Pirouz,et al.  Polytypic transformations in SiC: the role of TEM , 1993 .

[260]  M. Itoh Relation between surface reconstructions and RHEED intensity oscillations , 1998 .

[261]  U. Kaiser,et al.  Structure of SiC-Quantum Wells Studied by TEM and CBED , 2002 .

[262]  U. Starke,et al.  Crystallography of the Ñ3ˆ3Ö surface reconstruction of 3 C-SiCÑ111Ö ,4 H-SiCÑ0001Ö, and 6H-SiCÑ0001Ö surfaces retrieved by low-energy electron diffraction , 2000 .

[263]  H. Jagodzinski Polytypism in SiC crystals , 1954 .

[264]  W. J. Choyke,et al.  Aluminum acceptor four particle bound exciton complex in 4H, 6H, and 3C SiC , 1993 .

[265]  R. Davis,et al.  Microstructural evolution and defect formation during the initial stages of the growth of silicon carbide and aluminum nitride on α(6H)-SiC(0001) substrates , 1996 .

[266]  H. Matsunami Progress in epitaxial growth of SiC , 1993 .

[267]  R. Freer The Physics and Chemistry of Carbides, Nitrides and Borides , 1990 .

[268]  Y. Makarov,et al.  Analytical model of silicon carbide growth under free-molecular transport conditions , 1996 .

[269]  A. Fissel High-quality SiC epitaxial layers and low-dimensional heteropolytypic SiC structures grown by solid-source MBE , 2001 .

[270]  Friedhelm Bechstedt,et al.  STACKING FAULTS IN GROUP-IV CRYSTALS : AN AB INITIO STUDY , 1998 .

[271]  K. Eberl Si 1- y C y and Si 1- x-y Ge x C y alloy layers on Si substrate , 1998 .

[272]  Friedhelm Bechstedt,et al.  Vacancies in SiC: Influence of Jahn-Teller distortions, spin effects, and crystal structure , 1999 .

[273]  S. Miyazaki,et al.  Resonant tunneling through a self-assembled Si quantum dot , 1997 .

[274]  Y. Kainuma The Theory of Kikuchi patterns , 1955 .

[275]  O. Knacke,et al.  Die Theorie des Kristallwachstums , 1928 .

[276]  V. Tsvetkov,et al.  Progress in controlling the growth of polytypic crystals , 1983 .

[277]  W. Tiller,et al.  Computer modeling of Si and SiC surfaces and surface processes relevant to crystal growth from the vapor , 1984 .

[278]  R. Tromp,et al.  Thermal Adatoms on Si(001) , 1998 .

[279]  I. Pronin,et al.  Imaging of near-surface atomic structure by forward-focused backscattered electrons , 1998 .

[280]  W. J. Choyke,et al.  Photoluminescence of Radiation Defects in Cubic SiC: Localized Modes and Jahn-Teller Effect , 1971 .

[281]  V. Makarov LUMINESCENCE AND OPTICAL PROPERTIES OF SILICON CARBIDE IRRADIATED WITH FAST NEUTRONS. , 1972 .

[282]  James H. Parker,et al.  Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3 C , 4 H , 6 H , 1 5 R , and 2 1 R , 1968 .

[283]  R. Honig MASS SPECTROMETRIC STUDY OF THE MOLECULAR SUBLIMATION OF GRAPHITE , 1954 .

[284]  D. Apperley,et al.  Nuclear Magnetic Resonance Studies of Silicon Carbide Polytypes , 1991 .

[285]  H. Matsunami,et al.  Incorporation mechanism of N, Al, and B impurities in chemical vapor deposition of SiC , 1995 .

[286]  L. Wilde,et al.  Molecular beam epitaxial growth and characterization of ZnSe on GaAs , 1993 .

[287]  Heine,et al.  Electronic-charge displacement around a stacking boundary in SiC polytypes. , 1992, Physical review. B, Condensed matter.

[288]  A. Moritani,et al.  CONTROLLED SUBLIMATION GROWTH OF SINGLE CRYSTALLINE 4H-SIC AND 6H-SIC AND IDENTIFICATION OF POLYTYPES BY X-RAY DIFFRACTION , 1991 .

[289]  Lian Li,et al.  Atomic structures of 6HSiC (0001) and (0001̄) surfaces , 1996 .

[290]  W. Riecke,et al.  Zur Untersuchung des reziproken Gitters von Einkristallen mit Hilfe von Kikuchi-Diagrammen , 1959 .

[291]  F. Bechstedt,et al.  Model of the epitaxial growth of SiC-polytypes under surface-stabilized conditons , 1998 .

[292]  Dragan Panti,et al.  Handbook on semiconductors , 1998 .

[293]  D. Spanjaard,et al.  Concepts in surface physics , 1993 .

[294]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[295]  E. Bauer,et al.  Photoemission microscopy and atomic steps on Mo?011? , 1988 .

[296]  W. Witthuhn,et al.  Band-gap states of Ti, V, and Cr in 4H-SiC: Identification and characterization by elemental transmutation of radioactive isotopes , 1998 .

[297]  M. Miao,et al.  Stacking fault band structure in 4H–SiC and its impact on electronic devices , 2001 .

[298]  Y. Onuma Silicon Carbide Films Evaporated in Vacuum on Synthetic Micas , 1969 .

[299]  S. Nutt,et al.  Lattice mismatch measurement of epitaxial β‐SiC on α‐SiC substrates , 1995 .

[300]  H. Matsunami,et al.  Fabrication of P-N Junction Diodes Using Homoepitaxially Grown 6H-SiC at Low Temperature by Chemical Vapor Deposition , 1987 .

[301]  Nakayama,et al.  Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.

[302]  B. Schröter,et al.  Epitaxial growth of SiC-heterostructures on α-SiC(0001) by solid-source MBE , 1999 .

[303]  R. Davis,et al.  Homoepitaxial SiC Growth by Molecular Beam Epitaxy , 1997 .

[304]  B. Schröter,et al.  Influence of growth conditions on the growth mode and layer structure in MBE-growth of SiC on SiC(0001) , 1997 .

[305]  C. Schneer Polymorphism in one dimension , 1955 .

[306]  T. Fuyuki,et al.  Atomic layer epitaxy controlled by surface superstructures in SiC , 1993 .

[307]  W. J. Choyke,et al.  Luminescence of Donor-Acceptor Pairs in Cubic SiC , 1970 .

[308]  D. Greve,et al.  Preparation of atomically flat surfaces on silicon carbide using hydrogen etching , 1998 .

[309]  S. Denbaars,et al.  Persistent photoconductivity study in a high mobility AlGaN/GaN heterostructure , 2000 .

[310]  E. Janzén,et al.  Wetting Properties and Interfacial Energies in Liquid Phase Growth of α-SiC , 1997 .

[311]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[312]  V. Tsvetkov,et al.  Investigation of growth processes of ingots of silicon carbide single crystals , 1978 .