Experimental and Numerical Characterization of a Hybrid Fabry-Pérot Cavity for Temperature Sensing

A hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time.

[1]  Manuel López-Amo,et al.  Photonic Crystal Fibers for Sensing Applications , 2012, J. Sensors.

[2]  Aoxiang Lin,et al.  Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium. , 2009, Optics express.

[3]  Dominique Pagnoux,et al.  Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres , 2006 .

[4]  Orlando Frazão,et al.  Next generation of Fabry-Perot sensors for high-temperature , 2013 .

[5]  J. Villatoro,et al.  High-temperature sensing with tapers made of microstructured optical fiber , 2006, IEEE Photonics Technology Letters.

[6]  Francisco J. Arregui,et al.  Photonic Crystal Fiber Temperature Sensor Based on Quantum Dot Nanocoatings , 2009, J. Sensors.

[7]  Yi Jiang,et al.  Miniature Photonic Crystal Fiber Sensor for High-Temperature Measurement , 2014, IEEE Sensors Journal.

[8]  Xiaoling Tan,et al.  Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach–Zehnder Interferometer , 2014, IEEE Sensors Journal.

[9]  Laurent Bigot,et al.  Fibres à cristal photonique : 10 ans d'existence et un vaste champ d'applications , 2007 .

[10]  M. Lopez-Amo,et al.  Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror , 2012, Journal of Lightwave Technology.

[11]  R. A. Perez-Herrera,et al.  Resilient long-distance sensor system using a multiwavelength Raman laser , 2009, International Conference on Optical Fibre Sensors.

[12]  Jens Kobelke,et al.  Multimodal Interferometer Based on a Suspended Core Fiber for Simultaneous Measurement of Physical Parameters , 2015, Journal of Lightwave Technology.

[13]  Kwan Seob Park,et al.  Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. , 2008, Optics letters.

[14]  X. Qiao,et al.  A Miniature Fabry–Pérot Interferometer for High Temperature Measurement Using a Double-Core Photonic Crystal Fiber , 2014, IEEE Sensors Journal.

[15]  Xiaoyi Bao,et al.  Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber. , 2009, Optics letters.

[16]  J. P. Moura,et al.  Evaporation of volatile compounds in suspended-core fibers. , 2014, Optics letters.

[17]  Robert Bogue,et al.  Fibre optic sensors: a review of today's applications , 2011 .

[18]  Manuel Lopez-Amo,et al.  Real-Time FFT Analysis for Interferometric Sensors Multiplexing , 2015, Journal of Lightwave Technology.

[19]  M Lopez-Amo,et al.  Interrogation of a Suspended-Core Fabry–Perot Temperature Sensor Through a Dual Wavelength Raman Fiber Laser , 2010, Journal of Lightwave Technology.

[20]  Jian Ju,et al.  Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor , 2006, IEEE Photonics Technology Letters.

[21]  J. Hao,et al.  Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[22]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[23]  M. Lopez-Amo,et al.  Characterization of a hybrid Fabry-Perot Cavity based on a four-bridge double-Y-shape-core microstructured fiber , 2014, Other Conferences.