First-principles approach to the structural, electronic and intercalation voltage of Prussian blue (K_xFe[Fe(CN)_6]) (x = 1, 2) as potential cathode material for potassium ion batteries

[1]  X. Sun,et al.  Prussian Blue and Its Analogues as Cathode Materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries , 2022, Nano Energy.

[2]  K. Kubota,et al.  Application of Ionic Liquid as K-Ion Electrolyte of Graphite//K2Mn[Fe(CN)6] Cell , 2020 .

[3]  Yu Han,et al.  Prussian Blue Analogs for Rechargeable Batteries , 2018, iScience.

[4]  S. M. Mousavi-khoshdel,et al.  Cu- and Fe-hexacyanoferrate as cathode materials for Potassium ion battery: A First-principles study , 2017 .

[5]  Bingan Lu,et al.  An Organic Cathode for Potassium Dual-Ion Full Battery , 2017 .

[6]  N. López,et al.  A Database of the Structural and Electronic Properties of Prussian Blue, Prussian White, and Berlin Green Compounds through Density Functional Theory. , 2016, Inorganic chemistry.

[7]  Yan Yao,et al.  Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries , 2016 .

[8]  T. Gustafsson,et al.  Structure Characterization and Properties of K-Containing Copper Hexacyanoferrate. , 2016, Inorganic chemistry.

[9]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[10]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[11]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[12]  C. Ling,et al.  First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius , 2013 .

[13]  Lei Jin,et al.  Electronic structures and optic properties of Fe2TiO5 using LSDA+U approach , 2013 .

[14]  Yong Zhang,et al.  Advances in new cathode material LiFePO4 for lithium-ion batteries , 2012 .

[15]  J. Wojdel First principles calculations on the influence of water-filled cavities on the electronic structure of Prussian Blue , 2009, Journal of molecular modeling.

[16]  F. Illas,et al.  Prediction of half-metallic conductivity in Prussian Blue derivatives , 2009 .

[17]  Chick C. Wilson,et al.  A solid-state hybrid density functional theory study of Prussian blue analogues and related chlorides at pressure , 2008 .

[18]  S. Bromley,et al.  Band gap variation in Prussian Blue via cation-induced structural distortion. , 2006, The journal of physical chemistry. B.

[19]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[20]  S. Bromley,et al.  Efficient calculation of the structural and electronic properties of mixed valence materials: application to Prussian Blue analogues , 2004 .

[21]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[22]  D. Rosseinsky,et al.  Optical charge-transfer in iron(III)hexacyanoferrate(II): electro-intercalated cations induce lattice-energy-dependent ground-state energies. , 2003, Inorganic chemistry.

[23]  F. Scholz,et al.  Hexacyanoferrate-based composite ion-sensitive electrodes for voltammetry , 1996, Analytical and bioanalytical chemistry.

[24]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[25]  K. Ōno,et al.  Mössbauer Study of Soluble Prussian Blue, Insoluble Prussian Blue, and Turnbull's Blue , 1968 .

[26]  M. Robin The Color and Electronic Configurations of Prussian Blue , 1962 .