Quantile regression for dynamic panel data with fixed effects

[1]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[2]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[3]  Peter Schmidt,et al.  THE ASYMPTOTIC DISTRIBUTION OF FORECASTS IN THE DYNAMIC SIMULATION OF AN ECONOMETRIC MODEL , 1974 .

[4]  Eve Bofingeb,et al.  ESTIMATION OF A DENSITY FUNCTION USING ORDER STATISTICS1 , 1975 .

[5]  Frederic S. Mishkin,et al.  The Sensitivity of Consumption to Transitory Income: Estimates from Panel Data on Households , 1980 .

[6]  Cheng Hsiao,et al.  Estimation of Dynamic Models with Error Components , 1981 .

[7]  David M. De Long Crossing probabilities for a square root boundary by a bessel process , 1981 .

[8]  G. Chamberlain Multivariate regression models for panel data , 1982 .

[9]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[10]  Cheng Hsiao,et al.  Formulation and estimation of dynamic models using panel data , 1982 .

[11]  Roger Koenker,et al.  A note on L-estimates for linear models , 1984 .

[12]  Stephen Portnoy,et al.  Tightness of the Sequence of Empiric C.D.F. Processes Defined from Regression Fractiles , 1984 .

[13]  Matthew D. Shapiro,et al.  THE PERMANENT INCOME HYPOTHESIS AND THE REAL INTEREST RATE Some Evidence From Panel Data , 1984 .

[14]  J. Kadane Structural Analysis of Discrete Data with Econometric Applications , 1984 .

[15]  D. Freedman,et al.  Using the bootstrap to evaluate forecasting equations , 1985 .

[16]  Cheng Hsiao,et al.  Analysis of Panel Data , 1987 .

[17]  Kenneth J. Singleton,et al.  Modeling the term structure of interest rates under non-separable utility and durability of goods , 1986 .

[18]  Arnold Zellner,et al.  Macroeconomic Forecasting Using Pooled International Data , 1987 .

[19]  M. Nerlove,et al.  Biases in dynamic models with fixed effects , 1988 .

[20]  C. Carroll,et al.  Consumption Growth Parallels Income Growth: Some New Evidence , 1989 .

[21]  J. Geweke,et al.  Exact predictive densities for linear models with arch disturbances , 1989 .

[22]  S. Zeldes Consumption and Liquidity Constraints: An Empirical Investigation , 1989, Journal of Political Economy.

[23]  G. Constantinides,et al.  Habit Persistence and Durability in Aggregate Consumption: Empirical Tests , 1991 .

[24]  C. Gutenbrunner,et al.  Regression Rank Scores and Regression Quantiles , 1992 .

[25]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[26]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[27]  C. Granger,et al.  Forecasting from non-linear models in practice , 1994 .

[28]  R. Blundell,et al.  Initial Conditions and Moment Restrictions in Dynamic Panel Data Models , 1998 .

[29]  M. Arellano,et al.  Another look at the instrumental variable estimation of error-components models , 1995 .

[30]  Christopher D. Carroll,et al.  Saving and Growth with Habit Formation , 2000 .

[31]  Peter Schmidt,et al.  Efficient estimation of models for dynamic panel data , 1995 .

[32]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[33]  S. Portnoy,et al.  Direct use of regression quantiles to construct confidence sets in linear models , 1996 .

[34]  Roger Koenker,et al.  Conditional Quantile Estimation and Inference for Arch Models , 1996, Econometric Theory.

[35]  Michael J. Moore,et al.  Habit Formation and Intertemporal Substitution in Individual Food Consumption , 1996 .

[36]  Cheng Hsiao,et al.  A Panel Analysis of Liquidity Constraints and Firm Investment , 1997 .

[37]  Badi H. Baltagi,et al.  Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline , 1997 .

[38]  Stephen Portnoy,et al.  Statistical inference on heteroscedastic models based on regression quantiles , 1998 .

[39]  J. Campbell,et al.  By Force of Habit: A Consumption‐Based Explanation of Aggregate Stock Market Behavior , 1995, Journal of Political Economy.

[40]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[41]  D. Bunn,et al.  A Quantile Regression Approach to Generating Prediction Intervals , 1999 .

[42]  Badi H. Baltagi,et al.  To Pool or Not to Pool: Homogeneous Versus Heterogeneous Estimators Applied to Cigarette Demand , 2000, Review of Economics and Statistics.

[43]  Jeffrey C. Fuhrer Habit Formation in Consumption and Its Implications for Monetary Policy Models , 2000 .

[44]  Kenneth F. Wallis,et al.  Density Forecasting: A Survey , 2000 .

[45]  Gerard A. Pfann,et al.  Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates , 2000 .

[46]  Karen E. Dynan Habit Formation in Consumer Preferences: Evidence from Panel Data , 2000 .

[47]  Q. Shao,et al.  On Parameters of Increasing Dimensions , 2000 .

[48]  Tauno Palva,et al.  Pages 26-35 , 2001 .

[49]  Jinyong Hahn,et al.  Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects When Both N and T are Large , 2000 .

[50]  Álvaro A. Novo,et al.  The New Empirics of Economic Growth: Quantile Regression Estimation of Growth Equations , 2002 .

[51]  M. Pesaran,et al.  Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods , 2002 .

[52]  J. Labeaga,et al.  "Consumption and habits : evidence from panel data" , 2002 .

[53]  Charles H. Whiteman,et al.  Habit formation: a resolution of the equity premium puzzle? , 2002 .

[54]  Ivana Komunjer,et al.  Evaluation and Combination of Conditional Quantile Forecasts , 2002 .

[55]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[56]  G. MauriceJ.,et al.  Bias-corrected estimation in dynamic panel data models , 2002 .

[57]  M. Arellano,et al.  The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators , 2003 .

[58]  Jinyong Hahn,et al.  JACKKNIFE AND ANALYTICAL BIAS REDUCTION FOR NONLINEAR PANEL MODELS , 2003 .

[59]  William T. Gavin,et al.  A common model approach to macroeconomics: using panel data to reduce sampling error , 2003 .

[60]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[61]  G. Canarella,et al.  PARAMETER HETEROGENEITY IN THE NEOCLASSICAL GROWTH MODEL: A QUANTILE REGRESSION APPROACH , 2004 .

[62]  R. Koenker Quantile regression for longitudinal data , 2004 .

[63]  David F. Hendry,et al.  Non-Parametric Direct Multi-Step Estimation for Forecasting Economic Processes , 2004 .

[64]  Dennis Fok,et al.  Forecasting aggregates using panels of nonlinear time series , 2004 .

[65]  Christian Hansen,et al.  A Penalty Function Approach to Bias Reduction in Non-Linear Panel Models with Fixed Effects , 2005 .

[66]  Jinyong Hahn,et al.  Understanding Bias in Nonlinear Panel Models: Some Recent Developments ∗ , 2005 .

[67]  Xuming He,et al.  Conditional growth charts , 2006 .

[68]  Christian Hansen,et al.  Instrumental quantile regression inference for structural and treatment effect models , 2006 .

[69]  Badi H. Baltagi,et al.  Forecasting with Panel Data , 2007, SSRN Electronic Journal.

[70]  Jianqing Fan,et al.  Quantile autoregression. Commentary , 2006 .

[71]  Roger Koenker,et al.  Quantile Autoregression , 2006 .

[72]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[73]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[74]  M. Collado,et al.  Habits and heterogeneity in demands: a panel data analysis , 2007 .

[75]  R. Koenker,et al.  Regression Quantiles , 2007 .

[76]  Jason Abrevaya,et al.  The effects of birth inputs on birthweight : evidence from quantile estimation on panel data by , 2007 .

[77]  Yuzhi Cai A quantile approach to US GNP , 2007 .

[78]  Jason Abrevaya,et al.  The Effects of Birth Inputs on Birthweight , 2008 .

[79]  Carlos Lamarche PENALIZED QUANTILE REGRESSION ESTIMATION FOR A MODEL WITH ENDOGENOUS INDIVIDUAL EFFECTS , 2008 .

[80]  Yang Yang,et al.  Chapter 13 Bagging Binary and Quantile Predictors for Time Series: Further Issues , 2008 .

[81]  V. Chernozhukov,et al.  Instrumental variable quantile regression: A robust inference approach , 2008 .

[82]  Carlos Lamarche,et al.  Robust penalized quantile regression estimation for panel data , 2010 .

[83]  Yuzhi Cai Forecasting for quantile self-exciting threshold autoregressive time series models , 2010 .

[84]  Roger Koenker,et al.  March Madness, Quantile Regression Bracketology, and the Hayek Hypothesis , 2010 .

[85]  Stan Hurn Panel Data Econometrics , 2010 .

[86]  N. Foster,et al.  Determinants of Regional Economic Growth by Quantile , 2011 .

[87]  L. Lima,et al.  Constructing Density Forecasts from Quantile Regressions , 2012 .

[88]  K. Knight Comparing Conditional Quantile Estimators: Rst and Second Order Considerations , 2022 .