On the analysis of pseudo-orbits of continuous chaotic nonlinear systems simulated using discretization schemes in a digital computer

Abstract This paper reports the existence of more than one pseudo-orbit when simulating continuous nonlinear systems using a digital computer in a set-up different from the ones normally seen in the literature, that is, in a set-up where the step-size is not varied, the discretization scheme is kept the same as well as the initial conditions. Taking advantage of the roundoff error, a simple but effective method to determine a lower bound error and the critical time for the pseudo-orbits is used and the connection to the maximum (positive) Lyapunov exponent is established considering the bit resolution and the computational platform used for the simulations. To illustrate the effectiveness of the method and problems of using discretization schemes for simulating continuous nonlinear systems in a digital computer, the well-known Lorenz equations, the Rossler hyperchaos system, Mackey–Glass equation and the Sprott A system are used. The method can help the user of such schemes to keep track of the reliability of numerical simulations.

[1]  G. Choe,et al.  High precision numerical estimation of the largest Lyapunov exponent , 2010 .

[2]  S. Liao,et al.  On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0,10000] , 2013, 1305.4222.

[3]  S. Peck Simulation as experiment: a philosophical reassessment for biological modeling. , 2004, Trends in ecology & evolution.

[4]  Edward N. Lorenz,et al.  Computational chaos-a prelude to computational instability , 1989 .

[5]  Celso Grebogi,et al.  How long do numerical chaotic solutions remain valid , 1997 .

[6]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[7]  S. Liao Chaos: a bridge from microscopic uncertainty to macroscopic randomness , 2011, 1108.4472.

[8]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .

[9]  Celso Grebogi,et al.  Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..

[10]  Shijun Liao,et al.  On the reliability of computed chaotic solutions of non-linear differential equations , 2008, 0901.2986.

[11]  Bruce W. Bomar Low-roundoff-noise limit-cycle-free implementation of recursive transfer functions on a fixed-point digital signal processor , 1994, IEEE Trans. Ind. Electron..

[12]  Giorgio Turchetti,et al.  Analysis of Round Off Errors with Reversibility Test as a Dynamical indicator , 2012, Int. J. Bifurc. Chaos.

[13]  Robert M. Corless,et al.  What good are numerical simulations of chaotic dynamical systems , 1994 .

[14]  Shijun Liao,et al.  Physical limit of prediction for chaotic motion of three-body problem , 2013, Commun. Nonlinear Sci. Numer. Simul..

[15]  Erivelton G. Nepomuceno,et al.  A lower bound error for free-run simulation of the polynomial NARMAX , 2016 .

[16]  A. Markus,et al.  Numerical crisis found in the fixed step integration of a photoconductor model , 1997 .

[17]  Eduardo Mazoni Andrade Marçal Mendes,et al.  Nonstandard Discretization Schemes Applied to the Conservative Hénon-heiles System , 2007, Int. J. Bifurc. Chaos.

[18]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[19]  S. Hwang Roundoff noise in state-space digital filtering: A general analysis , 1976 .

[20]  Edward N. Lorenz,et al.  Computational periodicity as observed in a simple system , 2006 .

[21]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[22]  O. Rössler An equation for hyperchaos , 1979 .

[23]  R. Gilmore,et al.  The Topology of Chaos: Alice in Stretch and Squeezeland , 2002 .

[24]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .

[25]  Kevin Judd,et al.  Time Step Sensitivity of Nonlinear Atmospheric Models: Numerical Convergence, Truncation Error Growth, and Ensemble Design , 2007 .

[26]  Julien Clinton Sprott,et al.  Nonequilibrium systems: hard disks and harmonic oscillators near and far from equilibrium , 2015 .

[27]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[28]  Luigi Fortuna,et al.  A Simple Chaotic Flow with a Continuously Adjustable Attractor Dimension , 2015, Int. J. Bifurc. Chaos.

[29]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[30]  R. Roberts,et al.  Roundoff noise in digital filters: Frequency transformations and invariants , 1976 .

[31]  Erivelton G. Nepomuceno,et al.  Convergence of recursive functions on computers , 2014 .

[32]  I. Sandberg Floating-point-roundoff accumulation in digital-filter realizations , 1967 .

[33]  R. Roberts,et al.  Digital filter realizations without overflow oscillations , 1978 .

[34]  Leland B. Jackson,et al.  On the interaction of roundoff noise and dynamic range in digital filters , 1970, Bell Syst. Tech. J..

[35]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[36]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[37]  S. Liao,et al.  On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems , 2011, 1109.0130.

[38]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[39]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[40]  Shijun Liao Can We Obtain a Reliable Convergent Chaotic Solution in any Given Finite Interval of Time? , 2014, Int. J. Bifurc. Chaos.

[41]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[42]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[43]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[44]  Salvatore Monaco,et al.  A combinatorial approach of the nonlinear sampling problem , 1990 .

[45]  E. Mendes,et al.  Dynamic valid models for the conservative Hénon-Heiles system , 2011 .

[46]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  L. Jackson Limit cycles in state-space structures for digital filters , 1979 .

[48]  René Lozi,et al.  Can we trust in numerical computations of chaotic solutions of dynamical systems , 2013 .

[49]  Eduardo M. A. M. Mendes,et al.  A note on discretization of nonlinear differential equations. , 2002, Chaos.

[50]  Alfio Quarteroni,et al.  Scientific Computing with MATLAB and Octave (Texts in Computational Science and Engineering) , 2006 .

[51]  Clifford T. Mullis,et al.  Finite-memory problems and algorithms , 1974, IEEE Trans. Inf. Theory.

[52]  Erivelton G. Nepomuceno,et al.  A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions , 2016, Int. J. Bifurc. Chaos.

[53]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[54]  S. Liao On the reliability of computed chaotic solutions of non-linear differential equations , 2008, 0901.2986.

[55]  Z. Galias,et al.  The Dangers of Rounding Errors for Simulations and Analysis of Nonlinear Circuits and Systems?and How to Avoid Them , 2013, IEEE Circuits and Systems Magazine.