SLEP-150m compact supershort avalanche electron beam accelerator

A SLEP-150M gas-diode runaway electron accelerator was designed to produce supershort avalanche electron beams (SAEBs) at increased gas pressures. The cathode and gas-diode used in the design made it possible to greatly increase the current amplitude of the runaway electron beam produced in atmospheric pressure air. The number of electrons downstream of the gas diode foil was ~5 × 1010 electrons, and this corresponds to a SAEB amplitude of ~80 A at a FWHM of ~100 ps.

[1]  V. Tarasenko,et al.  Pulsed cathodoluminescence of diamond, calcite, spodumene, and fluorite under the action of subnanosecond electron beam , 2010 .

[2]  V. Tarasenko,et al.  An efficient cathode for generating an supershort avalanche electron beam in air at atmospheric pressure , 2010 .

[3]  E. H. Baksht,et al.  Spectrum of fast electrons in a subnanosecond breakdown of air-filled diodes at atmospheric pressure , 2010, 2010 IEEE International Power Modulator and High Voltage Conference.

[4]  L. Babich,et al.  Peculiarities of detecting pulses of runaway electrons and X-rays generated by high-voltage nanosecond discharges in open atmosphere , 2010 .

[5]  V. Tarasenko,et al.  Supershort Avalanche Electron Beams and X-rays in Atmospheric-Pressure Air , 2010, IEEE Transactions on Plasma Science.

[6]  V. Tarasenko,et al.  Generation of subnanosecond electron beams in air at atmospheric pressure , 2009 .

[7]  K. Becker,et al.  Luminescence From Minerals Excited by Subnanosecond Pulses of Runaway Electrons Generated in an Atmospheric-Pressure High-Voltage Discharge in Air , 2009, IEEE Transactions on Plasma Science.

[8]  V. Solomonov,et al.  Runaway electron beam generation by a plasma cathode in atmospheric air discharge , 2009 .

[9]  V. Tarasenko,et al.  Supershort Avalanche Electron Beams in Discharges in Air and Other Gases at High Pressure , 2009, IEEE Transactions on Plasma Science.

[10]  E. H. Baksht,et al.  Spectra of electrons and X-ray photons in a diffusive nanosecond discharge in air under atmospheric pressure , 2009 .

[11]  V. Tarasenko,et al.  Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air , 2008, 2009 IEEE International Conference on Plasma Science - Abstracts.

[12]  E. H. Baksht,et al.  Supershort avalanche electron beam generation in gases , 2008 .

[13]  V. Tarasenko,et al.  Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure , 2008 .

[14]  A. Neuber,et al.  Breakdown Delay Times for Subnanosecond Gas Discharges at Pressures Below One Atmosphere , 2008, IEEE Transactions on Plasma Science.

[15]  M. Yalandin,et al.  Picosecond-controlled switching of high-voltage gas discharge , 2008 .

[16]  V. Tarasenko,et al.  Generation and measurement of subnanosecond electron beams in gas-filled diodes , 2008 .

[17]  M. Yalandin,et al.  Electron source and acceleration regime of a picosecond electron beam in a gas-filled diode with inhomogeneous field , 2008 .

[18]  Victor F. Tarasenko,et al.  Supershort electron beam from air filled diode at atmospheric pressure , 2005 .

[19]  S. B. Alekseev,et al.  INTERACTION OF LASER RADIATION WITH MATTER: Luminescence of crystals excited by a KrCl laser and a subnanosecond electron beam , 2005 .

[20]  S. B. Alekseev,et al.  Luminescence of crystals under the action of a subnanosecond electron beam , 2005 .

[21]  S. B. Alekseev,et al.  On formation of subnanosecond electron beams in air under atmospheric pressure , 2004 .

[22]  S. B. Alekseev,et al.  Atmospheric-pressure CO2 laser with an electron-beam-initiated discharge produced in a working mixture , 2003 .

[23]  V. Tarasenko,et al.  Forming of an Electron Beam and a Volume Discharge in Air at Atmospheric Pressure , 2003 .

[24]  E I Lipatov,et al.  Luminescence of crystals excited by a KrCl laser and a subnanosecond electron beam , 2005 .