Computing simulation optical modes for VCSEL device

The authors discuss the comprehensive computation of optical modes in the context of physics-based semiconductor laser device simulation. In this approach a generic frequency domain finite element (FE) formulation of the dielectric optical resonator problem is used. The FE expansion of a realistic vertical-cavity surface-emitting laser (VCSEL) device yields very large sparse generalised complex non-Hermitian eigenproblems. In the course of solving the device equations self-consistently over the entire operation range of the laser device, a sequence of many such large eigenproblems has to be solved. A distinct property of this sequence is that each eigenproblem can be seen as the perturbed version of the former in the sequence. This fact is exploited by using an iterative numerical method that uses the solution of one eigenproblem to solve the next.

[1]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[2]  W. Fichtner,et al.  Numerical methods for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.

[3]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[4]  Dietmar Schroeder,et al.  Modelling of Interface Carrier Transport for Device Simulation , 1994 .

[5]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[6]  Thomas J. T. Kwan,et al.  Time-dependent numerical simulation of vertical cavity lasers , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[7]  Kevin Kells General electrothermal semiconductor device simulation , 1994 .

[8]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[9]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[10]  Numerical analysis of transverse mode in gain-guided vertical cavity surface emitting lasers , 1995 .

[11]  Hans W. Lehmann,et al.  Mode behavior and high resolution spectra of circularly‐symmetric GaAs‐AlGaAs air‐post vertical cavity surface emitting lasers , 1996 .

[12]  R. Baets,et al.  Rigorous electromagnetic study of diffraction loss in VCSEL mirrors , 1996 .

[13]  Yong-hee Lee,et al.  COMPUTATION OF RESONANT MODES OF OPEN RESONATORS USING THE FEM AND THE ANISOTROPIC PERFECTLY MATCHED LAYER BOUNDARY CONDITION , 1997 .

[14]  S. Chuang,et al.  Discrete Bessel transform and beam propagation method for modeling of vertical-cavity surface-emitting lasers , 1997 .

[15]  Rudolf Binder,et al.  Cold-cavity vectorial eigenmodes of VCSELs , 1997 .

[16]  Hans Wenzel,et al.  The effective frequency method in the analysis of vertical-cavity surface-emitting lasers , 1997 .

[17]  W. Chew,et al.  Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates , 1997 .

[18]  B. Rahman,et al.  Accurate three-dimensional modal solutions for optical resonators with periodic layered structure by using the finite element method , 1998 .

[19]  L. Register,et al.  Numerical simulation of vertical cavity surface emitting lasers. , 1998, Optics express.

[20]  Michael J. Noble,et al.  Analysis of microcavity VCSEL lasing modes using a full-vector weighted index method , 1998 .

[21]  G. R. Hadley,et al.  Low-truncation-error finite difference equations for photonics simulation. II. Vertical-cavity surface-emitting lasers , 1998 .

[22]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[23]  Scott W. Corzine,et al.  A FINITE-DIFFERENCE TIME-DOMAIN ELECTROMAGNETIC FIELD SOLVER FOR VERTICAL-CAVITY LASERS , 1998 .

[24]  K. Hess,et al.  Simulation of carrier transport and nonlinearities in quantum-well laser diodes , 1998 .

[25]  J. Lott,et al.  Quasi-exact optical analysis of oxide-apertured microcavity VCSELs using vector finite elements , 1998 .

[26]  Sadao Adachi,et al.  Optical Properties of Crystalline and Amorphous Semiconductors , 1999 .

[27]  L. Turner-Stokes,et al.  Effectiveness of brain injury rehabilitation. , 1999, Clinical rehabilitation.

[28]  Sadao Adachi,et al.  Optical Constants of Crystalline and Amorphous Semiconductors , 1999 .

[29]  Jianming Jin,et al.  A novel efficient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML , 1999 .

[30]  Sadao Adachi,et al.  Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information , 1999 .

[31]  S. Adachi Optical Properties of Crystalline and Amorphous Semiconductors , 1999 .

[32]  Peter Arbenz,et al.  A comparison of solvers for large eigenvalue problems occuring in the design of resonant cavities , 1999 .

[33]  M. Amann,et al.  Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency , 2000 .

[34]  Wolfgang Fichtner,et al.  A multidimensional laser simulator for edge-emitters including quantum carrier capture , 2000 .

[35]  G. A. Baraff,et al.  Nonadiabatic semiconductor laser rate equations for the large-signal, rapid-modulation regime , 2000 .

[36]  Olaf Schenk,et al.  Scalable parallel sparse LU factorization methods on shared memory multiprocessors , 2000 .

[37]  G. Nienhuis,et al.  Quantized mode of a leaky cavity , 2000 .

[38]  Mark S. Hybertsen,et al.  Simulation of semiconductor quantum well lasers , 2000 .

[39]  R. Baets,et al.  Analysis of cylindrical waveguide discontinuities using vectorial eigenmodes and perfectly matched layers , 2001 .

[40]  Active-cavity vertical-cavity surface-emitting laser eigenmodes with simple analytic representation , 2001 .

[41]  Reinhold Pregla,et al.  Comprehensive modeling of vertical-cavity laser-diodes by the method of lines , 2001 .

[42]  V. Couceiro,et al.  Positive effects of cerebrolysin on electroencephalogram slowing, cognition and clinical outcome in patients with postacute traumatic brain injury: an exploratory study. , 2003 .