Minimum-time Feedforward Plus PID Control for MIMO Systems

Abstract In this paper we propose a technique for the determination of a feedforward control law to be applied to a closed-loop PID-based control system for a multi-input multi-output process in order to achieve a minimum-time transition of the outputs subject to constraints on both the control variables and the system outputs. The optimal command inputs are determined by suitably approximating the state variables and the input signals by means of Chebyshev series and by subsequently solving a constrained optimisation problem. Simulation results demonstrate the effectiveness of the methodology.

[1]  Hussein Jaddu,et al.  Computation of optimal control trajectories using chebyshev polynomials : Parameterization, and quadratic programming , 1999 .

[2]  Antonio Visioli,et al.  Practical PID Control , 2006 .

[3]  Jiawen Dong,et al.  Design of robust multivariable PID controllers via IMC , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[4]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[5]  Antonio Visioli A new design for a PID plus feedforward controller , 2004 .

[6]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[7]  Aurelio Piazzi,et al.  Robust set-point constrained regulation via dynamic inversion† , 2001 .

[8]  Aurelio Piazzi,et al.  A noncausal approach for PID Control , 2006 .

[9]  Karl Johan Åström,et al.  PULSE-STEP CONTROL , 2002 .

[10]  Adolf Hermann Glattfelder,et al.  Control Systems with Input and Output Constraints , 2003 .

[11]  Jacques Vlassenbroeck,et al.  A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..

[12]  D. Seborg,et al.  Multiloop PI/PID controller design based on Gershgorin bands , 2001 .

[13]  Hsiao-Ping Huang,et al.  A Simple Multiloop Tuning Method for PID Controllers with No Proportional Kick , 1999 .

[14]  Moonyong Lee,et al.  Analytical Design of Multiloop PID Controllers for Desired Closed-Loop Responses (R&D Note) , 2004 .

[15]  A. Piazzi,et al.  Minimum-time feedforward control with input and output constraints , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[16]  Luca Consolini,et al.  Generalized bang-bang control for feedforward constrained regulation , 2006, CDC.

[17]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[18]  L. Fox,et al.  Chebyshev polynomials in numerical analysis , 1970 .