The zeta-regularized product of odious numbers

What is the product of all {\em odious} integers, i.e., of all integers whose binary expansion contains an odd number of $1$'s? Or more precisely, how to define a product of these integers which is not infinite, but still has a "reasonable" definition? We will answer this question by proving that this product is equal to $\pi^{1/4} \sqrt{2 \varphi e^{-\gamma}}$, where $\gamma$ and $\varphi$ are respectively the Euler-Mascheroni and the Flajolet-Martin constants.

[1]  N. Kurokawa,et al.  Generalized Zeta Regularizations, Quantum Class Number Formulas, and Appell's O-Functions , 2005 .

[2]  Steven R. Finch,et al.  Mathematical constants , 2005, Encyclopedia of mathematics and its applications.

[3]  Stephen W. Hawking Zeta function regularization of path integrals in curved spacetime , 1977 .

[4]  E. M. García,et al.  Communications in Mathematical Physics The Product Over All Primes is 4 π 2 , 2007 .

[5]  Y. Manin Lectures on zeta functions and motives , 2007 .

[6]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[7]  M. Yoshimoto Two Examples of Zeta-Regularization , 2002 .

[8]  Jeffrey Shallit,et al.  The Ubiquitous Prouhet-Thue-Morse Sequence , 1998, SETA.

[9]  On Lucas-balancing zeta function , 2018, Acta et Commentationes Universitatis Tartuensis de Mathematica.

[10]  N. Kurokawa,et al.  A Generalization of Lerch’s Formula , 2004 .

[11]  Jean-Paul Allouche,et al.  Automatic Dirichlet Series , 2000 .

[12]  A. Voros Zeta Functions over Zeros of Zeta Functions , 2009 .

[13]  G. Illies Regularized Products and Determinants , 2001 .

[14]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[15]  C. Deninger On the Γ-factors attached to motives , 1991 .

[16]  J. Allouche Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence , 2014, 1401.3727.

[17]  N. Kurokawa,et al.  Some examples of generalized zeta regularized products , 2004 .

[18]  A. Kitson The regularized product of the Fibonacci numbers , 2006, math/0608187.

[19]  R. A. Gorder GLAISHER-TYPE PRODUCTS OVER THE PRIMES , 2012 .

[20]  Jean-Paul Allouche,et al.  Dirichlet Series and Curious infinite Products , 1985 .

[21]  J. Quine,et al.  Zeta regularized products , 1993 .

[22]  S. Zerbini,et al.  FINITE TEMPERATURE QUANTUM FIELD THEORY ON NONCOMPACT DOMAINS AND APPLICATION TO DELTA INTERACTIONS , 2009 .