Preference elicitation in prioritized skyline queries

Preference queries incorporate the notion of binary preference relation into relational database querying. Instead of returning all the answers, such queries return only the best answers, according to a given preference relation. Preference queries are a fast growing area of database research. Skyline queries constitute one of the most thoroughly studied classes of preference queries. A well-known limitation of skyline queries is that skyline preference relations assign the same importance to all attributes. In this work, we study p-skyline queries that generalize skyline queries by allowing varying attribute importance in preference relations. We perform an in-depth study of the properties of p-skyline preference relations. In particular, we study the problems of containment and minimal extension. We apply the obtained results to the central problem of the paper: eliciting relative importance of attributes. Relative importance is implicit in the constructed p-skyline preference relation. The elicitation is based on user-selected sets of superior (positive) and inferior (negative) examples. We show that the computational complexity of elicitation depends on whether inferior examples are involved. If they are not, elicitation can be achieved in polynomial time. Otherwise, it is NP complete. Our experiments show that the proposed elicitation algorithm has high accuracy and good scalability.

[1]  Jian Pei,et al.  Distance-Based Representative Skyline , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[2]  Jarek Gryz,et al.  Algorithms and analyses for maximal vector computation , 2007, The VLDB Journal.

[3]  Carmel Domshlak,et al.  Efficient and non-parametric reasoning over user preferences , 2007, User Modeling and User-Adapted Interaction.

[4]  Bin Jiang,et al.  Mining preferences from superior and inferior examples , 2008, KDD.

[5]  Anthony K. H. Tung,et al.  Call to order: a hierarchical browsing approach to eliciting users' preference , 2010, SIGMOD Conference.

[6]  Ken C. K. Lee,et al.  Approaching the Skyline in Z Order , 2007, VLDB.

[7]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[8]  Jian Pei,et al.  Catching the Best Views of Skyline: A Semantic Approach Based on Decisive Subspaces , 2005, VLDB.

[9]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[10]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[11]  Werner Kießling,et al.  Preference Mining: A Novel Approach on Mining User Preferences for Personalized Applications , 2003, PKDD.

[12]  Ronen I. Brafman,et al.  Introducing Variable Importance Tradeoffs into CP-Nets , 2002, UAI.

[13]  Kian-Lee Tan,et al.  Stratified computation of skylines with partially-ordered domains , 2005, SIGMOD '05.

[14]  Peter Haddawy,et al.  A Hybrid Approach to Reasoning with Partially Elicited Preference Models , 1999, UAI.

[15]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[16]  Anthony K. H. Tung,et al.  Finding k-dominant skylines in high dimensional space , 2006, SIGMOD Conference.

[17]  Fahiem Bacchus,et al.  Utility Independence in a Qualitative Decision Theory , 1996, KR.

[18]  Craig Boutilier,et al.  A POMDP formulation of preference elicitation problems , 2002, AAAI/IAAI.

[19]  Jarek Gryz,et al.  Maximal Vector Computation in Large Data Sets , 2005, VLDB.

[20]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[21]  Peter Haddawy,et al.  Preference Elicitation via Theory Refinement , 2003, J. Mach. Learn. Res..

[22]  Wolf-Tilo Balke,et al.  Exploiting Indifference for Customization of Partial Order Skylines , 2006, 2006 10th International Database Engineering and Applications Symposium (IDEAS'06).

[23]  Qing Liu,et al.  Efficient Computation of the Skyline Cube , 2005, VLDB.

[24]  Anthony K. H. Tung,et al.  Understanding the meaning of a shifted sky: a general framework on extending skyline query , 2010, The VLDB Journal.

[25]  Jan Chomicki,et al.  Skyline with presorting , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[26]  S. Hansson Changes in preference , 1995 .

[27]  Boi Faltings,et al.  User-Involved Preference Elicitation , 2003 .

[28]  Jignesh M. Patel,et al.  Efficient Skyline Computation over Low-Cardinality Domains , 2007, VLDB.

[29]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[30]  Seung-won Hwang,et al.  Personalized top-k skyline queries in high-dimensional space , 2009, Inf. Syst..

[31]  Daphne Koller,et al.  Making Rational Decisions Using Adaptive Utility Elicitation , 2000, AAAI/IAAI.

[32]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[33]  Werner Kießling,et al.  Preference SQL - Design, Implementation, Experiences , 2002, VLDB.

[34]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS '01.

[35]  Wolf-Tilo Balke,et al.  Optimal Preference Elicitation for Skyline Queries over Categorical Domains , 2008, DEXA.

[36]  Jan Chomicki,et al.  Preference formulas in relational queries , 2003, TODS.

[37]  Eugene L. Lawler,et al.  The recognition of Series Parallel digraphs , 1979, SIAM J. Comput..

[38]  Beng Chin Ooi,et al.  Efficient Progressive Skyline Computation , 2001, VLDB.

[39]  Paolo Viappiani,et al.  Preference-based Search using Example-Critiquing with Suggestions , 2006, J. Artif. Intell. Res..

[40]  Hongjun Lu,et al.  Stabbing the sky: efficient skyline computation over sliding windows , 2005, 21st International Conference on Data Engineering (ICDE'05).

[41]  Wolf-Tilo Balke,et al.  Incremental Trade-Off Management for Preference-Based Queries , 2007, Int. J. Comput. Sci. Appl..

[42]  Werner Kießling,et al.  Preference Queries with SV-Semantics , 2005, COMAD.

[43]  Xuemin Lin,et al.  Selecting Stars: The k Most Representative Skyline Operator , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[44]  Parke Godfrey,et al.  Skyline Cardinality for Relational Processing , 2004, FoIKS.

[45]  Dimitrios Gunopulos,et al.  Answering top-k queries using views , 2006, VLDB.

[46]  Jon Doyle,et al.  Efficient utility functions for ceteris paribus preferences , 2002, AAAI/IAAI.

[47]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[48]  Donald Kossmann,et al.  Shooting Stars in the Sky: An Online Algorithm for Skyline Queries , 2002, VLDB.