Estimating and tracking the remaining carbon budget for stringent climate targets

[1]  A. Arneth,et al.  Framing and Context , 2019 .

[2]  Keywan Riahi,et al.  A new scenario resource for integrated 1.5 °C research , 2018, Nature Climate Change.

[3]  P. Ciais,et al.  Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release , 2018, Nature Geoscience.

[4]  P. Cox,et al.  Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks , 2018, Nature Geoscience.

[5]  Rob Bellamy Incentivize negative emissions responsibly , 2018 .

[6]  Dorothea Hilhorst,et al.  Synthesis Report , 2018, Reshaping Decentralised Development Co-operation.

[7]  Christopher J. Smith,et al.  FAIR v1.3: a simple emissions-based impulse response and carbon cycle model , 2018, Geoscientific Model Development.

[8]  M. Allen,et al.  A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation , 2018, npj Climate and Atmospheric Science.

[9]  J. Schwinger,et al.  Ocean Carbon Cycle Feedbacks Under Negative Emissions , 2018 .

[10]  William F. Lamb,et al.  Negative emissions—Part 3: Innovation and upscaling , 2018 .

[11]  William F. Lamb,et al.  Negative emissions—Part 2: Costs, potentials and side effects , 2018 .

[12]  Felix Creutzig,et al.  Negative emissions—Part 1: Research landscape and synthesis , 2018 .

[13]  G. Peters Beyond carbon budgets , 2018, Nature Geoscience.

[14]  O. Geden Politically informed advice for climate action , 2018, Nature Geoscience.

[15]  J. Lowe,et al.  The impact of Earth system feedbacks on carbon budgets and climate response , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  E. Ceschia,et al.  What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops , 2018 .

[17]  Nadine Mengis,et al.  1.5 °C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing , 2018, Scientific Reports.

[18]  N. Gillett,et al.  Cumulative carbon emissions budgets consistent with 1.5 °C global warming , 2018, Nature Climate Change.

[19]  P. Friedlingstein,et al.  The utility of the historical record for assessing the transient climate response to cumulative emissions , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  E. Hawkins,et al.  Interpretations of the Paris climate target , 2018, Nature Geoscience.

[21]  Tomoko Hasegawa,et al.  Scenarios towards limiting global mean temperature increase below 1.5 °C , 2018, Nature Climate Change.

[22]  G. Luderer,et al.  Pathways limiting warming to 1.5°C: a tale of turning around in no time? , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Richard G. Williams,et al.  Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints , 2018, Nature Geoscience.

[24]  P. Forster,et al.  Climate Impacts From a Removal of Anthropogenic Aerosol Emissions , 2018, Geophysical research letters.

[25]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[26]  R. Millar,et al.  Global temperature definition affects achievement of long-term climate goals , 2018 .

[27]  J. Rogelj,et al.  Global mean temperature indicators linked to warming levels avoiding climate risks , 2018, Environmental Research Letters.

[28]  N. Gillett,et al.  The influence of non-CO2 forcings on cumulative carbon emissions budgets , 2018 .

[29]  P. Forster,et al.  A real-time Global Warming Index , 2017, Scientific Reports.

[30]  J. Rogelj,et al.  Getting It Right Matters: Temperature Goal Interpretations in Geoscience Research , 2017 .

[31]  E. Hawkins,et al.  Estimating Changes in Global Temperature since the Preindustrial Period , 2017 .

[32]  P. Friedlingstein,et al.  Emission budgets and pathways consistent with limiting warming to 1.5 °C , 2017 .

[33]  G. Hegerl,et al.  Importance of the Pre-Industrial Baseline in Determining the Likelihood of Exceeding the Paris Limits , 2017, Nature climate change.

[34]  P. Ciais,et al.  Quantifying uncertainties of permafrost carbon–climate feedbacks , 2017 .

[35]  N. Gillett,et al.  The Sensitivity of the Proportionality between Temperature Change and Cumulative CO2 Emissions to Ocean Mixing , 2017 .

[36]  P. Friedlingstein,et al.  Estimating Carbon Budgets for Ambitious Climate Targets , 2017, Current Climate Change Reports.

[37]  R. Knutti,et al.  The Uncertainty in the Transient Climate Response to Cumulative CO2 Emissions Arising from the Uncertainty in Physical Climate Parameters , 2017 .

[38]  J. Weyant Some Contributions of Integrated Assessment Models of Global Climate Change , 2017, Review of Environmental Economics and Policy.

[39]  Atul K. Jain,et al.  Global Carbon Budget 2017 (in open review for Earth System Science Data). doi: 10.5194/essd-2017-123 , 2017 .

[40]  J. Eom,et al.  The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview , 2017 .

[41]  K. Calvin,et al.  Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century , 2017 .

[42]  K. Zickfeld,et al.  What determines the warming commitment after cessation of CO2 emissions? , 2017 .

[43]  P. Cox,et al.  Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2 , 2016, Nature.

[44]  A. Weaver,et al.  The climate response to five trillion tonnes of carbon , 2016 .

[45]  Joeri Rogelj,et al.  Science and policy characteristics of the Paris Agreement temperature goal , 2016 .

[46]  Christopher B. Field,et al.  Mapping the climate change challenge , 2016 .

[47]  H. Matthews,et al.  On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions , 2016 .

[48]  R. Knutti,et al.  Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach , 2016 .

[49]  Oliver Geden,et al.  An actionable climate target , 2016 .

[50]  Keywan Riahi,et al.  Differences between carbon budget estimates unravelled , 2016 .

[51]  F. Joos,et al.  Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble , 2016 .

[52]  Phil Williamson,et al.  Emissions reduction: Scrutinize CO2 removal methods , 2016, Nature.

[53]  L. Bopp,et al.  A framework to understand the transient climate response to emissions , 2016 .

[54]  K. Tachiiri,et al.  Increase of uncertainty in transient climate response to cumulative carbon emissions after stabilization of atmospheric CO2 concentration , 2015 .

[55]  H. Damon Matthews,et al.  Quantifying the Limits of a Linear Temperature Response to Cumulative CO2 Emissions , 2015 .

[56]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[57]  R. Knutti,et al.  Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings , 2015 .

[58]  P. Ciais,et al.  A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  Keywan Riahi,et al.  Zero emission targets as long-term global goals for climate protection , 2015 .

[60]  T. Frölicher,et al.  Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales , 2015 .

[61]  Keywan Riahi,et al.  Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming , 2015 .

[62]  R. Knutti,et al.  Mitigation choices impact carbon budget size compatible with low temperature goals , 2015 .

[63]  Jessica Strefler,et al.  Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios , 2015 .

[64]  Thomas C. Peterson,et al.  Possible artifacts of data biases in the recent global surface warming hiatus , 2015, Science.

[65]  Pierre Friedlingstein,et al.  The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. , 2015 .

[66]  K. Zickfeld,et al.  The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission , 2015 .

[67]  R. Knutti,et al.  The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics , 2015, Climatic Change.

[68]  D. M. Lawrence,et al.  Climate change and the permafrost carbon feedback , 2014, Nature.

[69]  M. Meinshausen,et al.  Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity , 2014 .

[70]  Ken Caldeira,et al.  Maximum warming occurs about one decade after a carbon dioxide emission , 2014 .

[71]  Corinne Le Quéré,et al.  Persistent growth of CO2 emissions and implications for reaching climate targets , 2014 .

[72]  R. Knutti,et al.  Natural variability, radiative forcing and climate response in the recent hiatus reconciled , 2014 .

[73]  K. Schaefer,et al.  The impact of the permafrost carbon feedback on global climate , 2014 .

[74]  K. Cowtan,et al.  Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends , 2014 .

[75]  Thomas L. Frölicher,et al.  Continued global warming after CO 2 emissions stoppage , 2014 .

[76]  Atul K. Jain,et al.  Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies , 2014, The New phytologist.

[77]  Myles R. Allen,et al.  Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations , 2013 .

[78]  S. Solomon,et al.  Irreversible Does Not Mean Unavoidable , 2013, Science.

[79]  James W. Hurrell,et al.  Climate Science for Serving Society: Research, Modeling and Prediction Priorities , 2013 .

[80]  Andrei P. Sokolov,et al.  Long-Term climate change commitment and reversibility: An EMIC intercomparison , 2013 .

[81]  Thomas M. Smith,et al.  NOAA's Merged Land-Ocean Surface Temperature Analysis , 2012 .

[82]  S. Solomon,et al.  Cumulative carbon as a policy framework for achieving climate stabilization , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[83]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[84]  V. Brovkin,et al.  Estimating the near-surface permafrost-carbon feedback on global warming , 2012 .

[85]  Nicholas Stern,et al.  Uncertainty in science and its role in climate policy , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[86]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[87]  Tom M. L. Wigley,et al.  Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications , 2011 .

[88]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[89]  S. Marshall,et al.  Ongoing climate change following a complete cessation of carbon dioxide emissions , 2011 .

[90]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[91]  Pierre Friedlingstein,et al.  Persistence of climate changes due to a range of greenhouse gases , 2010, Proceedings of the National Academy of Sciences.

[92]  Dirk Messner,et al.  The budget approach: A framework for a global transformation toward a low-carbon economy , 2010 .

[93]  A. Arneth,et al.  Terrestrial biogeochemical feedbacks in the climate system , 2010 .

[94]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[95]  Simon Buckle,et al.  Mitigation of climate change , 2009, The Daunting Climate Change.

[96]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[97]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[98]  A. Weaver,et al.  Setting cumulative emissions targets to reduce the risk of dangerous climate change , 2008, Proceedings of the National Academy of Sciences.

[99]  Ken Caldeira,et al.  Stabilizing climate requires near‐zero emissions , 2008 .

[100]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[101]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[102]  Michel G.J. den Elzen,et al.  Multi-gas Emissions Pathways to Meet Climate Targets , 2006 .

[103]  David A. Bader,et al.  Facial Expression Recognition System using Statistical Feature and Neural Network , 2012 .

[104]  P. Sands The United Nations Framework Convention on Climate Change , 1992 .