Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE DW): A New Method to Rapidly Prototype Active and Passive Electronic Circuit Elements

We demonstrate a novel laser-based approach to perform rapid prototyping of active and passive circuit elements called MAPLE DW. This technique is similar in its implementation to laser induced forward transfer (LIFT), but different in terms of the fundamental transfer mechanism and materials used. In MAPLE DW, a focused pulsed laser beam interacts with a composite material on a laser transparent support transferring the composite material to the acceptor substrate. This process enables the formation of adherent and uniform coatings at room temperature and atmospheric pressure with minimal post-deposition modification required, i.e., ≤400°C thermal processing. The firing of the laser and the work piece (substrate) motion is computer automated and synchronized using software designs from an electromagnetic modeling program validating that this technique is fully CAD/CAM compatible. The final properties of the deposited materials depend on the deposition conditions and the materials used, but when optimized, the properties are competitive with other thick film techniques such as screen-printing. Specific electrical results for conductors are 3 /TiO 2 composite capacitors the k can be tuned between 4 and 100 and losses are