Eisenberg-Gale markets: Algorithms and game-theoretic properties

[1]  Nikhil R. Devanur,et al.  Market equilibrium via a primal--dual algorithm for a convex program , 2008, JACM.

[2]  Nikhil R. Devanur,et al.  On competitiveness in uniform utility allocation markets , 2007, Oper. Res. Lett..

[3]  Kiyohito Nagano,et al.  On Convex Minimization over Base Polytopes , 2007, IPCO.

[4]  Nikhil R. Devanur,et al.  New Results on Rationality and Strongly Polynomial Time Solvability in Eisenberg-Gale Markets , 2006, WINE.

[5]  Vijay V. Vazirani,et al.  A primal-dual algorithm for computing Fisher equilibrium in the absence of gross substitutability property , 2005, Theor. Comput. Sci..

[6]  Lun Li,et al.  Cross-layer optimization in TCP/IP networks , 2005, IEEE/ACM Transactions on Networking.

[7]  Vijay V. Vazirani,et al.  Market equilibria for homothetic, quasi-concave utilities and economies of scale in production , 2005, SODA '05.

[8]  Bruno Codenotti,et al.  Efficient Computation of Equilibrium Prices for Markets with Leontief Utilities , 2004, ICALP.

[9]  Steven H. Low,et al.  A duality model of TCP and queue management algorithms , 2003, TNET.

[10]  Nikhil R. Devanur,et al.  Market equilibrium via a primal-dual-type algorithm , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[11]  Vijay V. Vazirani,et al.  Equitable cost allocations via primal-dual-type algorithms , 2002, STOC '02.

[12]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[13]  Vijay V. Vazirani,et al.  Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001, JACM.

[14]  Ashish Goel,et al.  Approximate majorization and fair online load balancing , 2001, TALG.

[15]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[16]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[17]  Steven H. Low,et al.  Optimization flow control—I: basic algorithm and convergence , 1999, TNET.

[18]  S. Fujishige,et al.  A Strongly Polynomial-Time Algorithm for Minimizing Submodular Functions (Algorithm Engineering as a New Paradigm) , 1999 .

[19]  Christos H. Papadimitriou,et al.  Worst-case Equilibria , 1999, STACS.

[20]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[21]  Francisco Barahona,et al.  Packing Spanning Trees , 1995, Math. Oper. Res..

[22]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[23]  Mihalis Yannakakis,et al.  Multiway Cuts in Directed and Node Weighted Graphs , 1994, ICALP.

[24]  David P. Williamson,et al.  A primal-dual approximation algorithm for generalized steiner network problems , 1993, Comb..

[25]  H. Groenevelt Two algorithms for maximizing a separable concave function over a polymatroid feasible region , 1991 .

[26]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..

[27]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[28]  William H. Cunningham,et al.  Minimum cuts, modular functions, and matroid polyhedra , 1985, Networks.

[29]  Nimrod Megiddo,et al.  Optimal flows in networks with multiple sources and sinks , 1974, Math. Program..

[30]  B. Rothschild,et al.  MULTICOMMODITY NETWORK FLOWS. , 1969 .

[31]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[32]  E. Eisenberg Aggregation of Utility Functions , 1961 .

[33]  E. Eisenberg,et al.  CONSENSUS OF SUBJECTIVE PROBABILITIES: THE PARI-MUTUEL METHOD, , 1959 .

[34]  V. Vazirani Algorithmic Game Theory: Combinatorial Algorithms for Market Equilibria , 2007 .

[35]  H. Scarf,et al.  How to Compute Equilibrium Prices in 1891 , 2005 .

[36]  S. Low,et al.  Understanding Vegas: a duality model , 2002 .

[37]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[38]  S. Low,et al.  Understanding TCP vegas: a duality model , 2001, Measurement and Modeling of Computer Systems.

[39]  Frank Kelly,et al.  Charging and rate control for elastic traffic , 1997, Eur. Trans. Telecommun..

[40]  QUTdN QeO,et al.  Random early detection gateways for congestion avoidance , 1993, TNET.

[41]  V. Jacobson,et al.  Congestion avoidance and control , 1988, SIGCOMM '88.

[42]  N. Megiddo A Note on the Complexity of P � Matrix LCP and Computing an Equilibrium , 1988 .

[43]  Lloyd S. Shapley,et al.  On balanced sets and cores , 1967 .

[44]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[45]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .