Object-oriented Computation of Sandwich Estimators

This introduction to the object-orientation features of the R package sandwich is a (slightly) modified version of Zeileis (2006), published in the Journal of Statistical Software. Sandwich covariance matrix estimators are a popular tool in applied regression modeling for performing inference that is robust to certain types of model misspecification. Suitable implementations are available in the R system for statistical computing for certain model fitting functions only (in particular lm()), but not for other standard regression functions, such as glm(), nls(), or survreg(). Therefore, conceptual tools and their translation to computational tools in the package sandwich are discussed, enabling the computation of sandwich estimators in general parametric models. Object orientation can be achieved by providing a few extractor functions—most importantly for the empirical estimating functions—from which various types of sandwich estimators can be computed.

[1]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[2]  A. Zeileis Econometric Computing with HC and HAC Covariance Matrix Estimators , 2004 .

[3]  W. Newey,et al.  Automatic Lag Selection in Covariance Matrix Estimation , 1994 .

[4]  Patrick J. Heagerty,et al.  Weighted empirical adaptive variance estimators for correlated data regression , 1999 .

[5]  F. Eicker Asymptotic Normality and Consistency of the Least Squares Estimators for Families of Linear Regressions , 1963 .

[6]  H. White,et al.  Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties☆ , 1985 .

[7]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[8]  L. G. Godfrey,et al.  Tests for regression models with heteroskedasticity of unknown form , 2006, Comput. Stat. Data Anal..

[9]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[10]  D. Freedman,et al.  On The So-Called “Huber Sandwich Estimator” and “Robust Standard Errors” , 2006 .

[11]  Achim Zeileis,et al.  Applied Econometrics with R , 2008 .

[12]  L. Stefanski,et al.  The Calculus of M-Estimation , 2002 .

[13]  J. S. Long,et al.  Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model , 2000 .

[14]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[15]  Achim Zeileis Object-oriented Computation of Sandwich Estimators , 2006 .

[16]  Nicholas M. Kiefer,et al.  HETEROSKEDASTICITY-AUTOCORRELATION ROBUST TESTING USING BANDWIDTH EQUAL TO SAMPLE SIZE , 2002, Econometric Theory.

[17]  Ray C. Fair,et al.  A Theory of Extramarital Affairs , 1978, Journal of Political Economy.

[18]  A. Zeileis,et al.  Regression Models for Count Data in R , 2008 .

[19]  Adrian Pagan,et al.  Estimation, Inference and Specification Analysis. , 1996 .

[20]  Brian D. Ripley,et al.  Modern applied statistics with S, 4th Edition , 2002, Statistics and computing.

[21]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[22]  A. Cameron,et al.  Microeconometrics: Methods and Applications , 2005 .

[23]  Yvonne Freeh,et al.  An R and S–PLUS Companion to Applied Regression , 2004 .

[24]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[25]  Francisco Cribari Neto Asymptotic inference under heteroskedasticity of unknown form , 2004 .