Evaluation of the in vitro protein bioaccessibility of several microalgae and cyanobacteria as potential dietary ingredients in gilthead seabream (Sparus aurata) juveniles

[1]  L. Franková,et al.  Hemicellulose-remodelling transglycanase activities from charophytes: towards the evolution of the land-plant cell wall. , 2021, The Plant journal : for cell and molecular biology.

[2]  J. A. Martos-Sitcha,et al.  Evaluation of the Inclusion of the Green Seaweed Ulva ohnoi as an Ingredient in Feeds for Gilthead Sea Bream (Sparus aurata) and European Sea Bass (Dicentrarchus labrax) , 2021, Animals : an open access journal from MDPI.

[3]  I. Ahmad,et al.  Role of branched‐chain amino acids on growth, physiology and metabolism of different fish species: A review , 2021 .

[4]  I. S. B. Singh,et al.  Enhanced biomass production and proximate composition of marine microalga Nannochloropsis oceanica by optimization of medium composition and culture conditions using response surface methodology , 2021 .

[5]  A. Yadav,et al.  Impacts of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) level and ratio on the growth, fatty acids composition and hepatic-antioxidant status of largemouth bass (Micropterus salmoides) , 2020 .

[6]  Mehdi Shamsaie Mehrgan,et al.  Partial replacement of fishmeal with corn protein concentrate in diets for rainbow trout ( Oncorhynchus mykiss ): Effects on growth performance, physiometabolic responses, and fillet quality , 2020 .

[7]  H. Pereira,et al.  Brazilian policy and agribusiness damage the Amazon rainforest , 2020 .

[8]  Shun Yang,et al.  Exogenous enzymes as functional additives in finfish aquaculture , 2020, Aquaculture Nutrition.

[9]  H. Peres,et al.  Dietary protein requirements of fish – a meta‐analysis , 2019, Reviews in Aquaculture.

[10]  J. Strugnell,et al.  The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets , 2019, One Earth.

[11]  B. Hankamer,et al.  Microalgal Aquafeeds As Part of a Circular Bioeconomy. , 2019, Trends in plant science.

[12]  J. Schrama,et al.  Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus) , 2019, Aquaculture.

[13]  S. Vlaeminck,et al.  Dunaliella Microalgae for Nutritional Protein: An Undervalued Asset. , 2019, Trends in biotechnology.

[14]  F. G. Acién,et al.  Differential hydrolysis of proteins of four microalgae by the digestive enzymes of gilthead sea bream and Senegalese sole , 2019, Algal Research.

[15]  S. Chianese,et al.  Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals , 2018, International journal of environmental research and public health.

[16]  M. Hendrickx,et al.  Impact of different sequences of mechanical and thermal processing on the rheological properties of Porphyridium cruentum and Chlorella vulgaris as functional food ingredients. , 2018, Food & function.

[17]  N. Daniel A review on replacing fish meal in aqua feeds using plant protein sources , 2018 .

[18]  Y. Al-Hafedh,et al.  Effect of dietary fish meal replacement by red algae, Gracilaria arcuata, on growth performance and body composition of Nile tilapia Oreochromis niloticus , 2017, Saudi journal of biological sciences.

[19]  Giovanni Antonio Lutzu,et al.  Microalgae in aquafeeds for a sustainable aquaculture industry , 2018, Journal of Applied Phycology.

[20]  S. Panserat,et al.  Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies , 2017 .

[21]  Leen Bastiaens,et al.  Cell disruption technologies , 2017 .

[22]  D. Lemos,et al.  In vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss) , 2017 .

[23]  Gürkan Diken,et al.  THE POTENTIAL INHIBITORY EFFECTS OF MICROALGAE AND MACROALGAE ON PROTEASE ACTIVITIES OF ARGYROSOMUS REGIUS (PISCES, SCIANIDAE) LARVAE USING IN VITRO ASSAYS , 2016 .

[24]  R. Hardy,et al.  Evaluation of apparent digestibility coefficients of individual feed ingredients in spotted rose snapper Lutjanus guttatus (Steindachner, 1869) , 2015 .

[25]  Jun Cheng,et al.  Growth optimisation of microalga mutant at high CO₂ concentration to purify undiluted anaerobic digestion effluent of swine manure. , 2015, Bioresource technology.

[26]  A. C. Guedes,et al.  Application of Microalgae Protein to Aquafeed , 2015 .

[27]  H. Peres,et al.  Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish , 2015 .

[28]  S. Lall,et al.  Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors , 2015, Journal of Applied Phycology.

[29]  M. C. Cerón-García,et al.  Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles , 2014 .

[30]  J. M. Franco,et al.  Comparison of microalgal biomass profiles as novel functional ingredient for food products , 2013 .

[31]  Malcolm Jobling,et al.  National Research Council (NRC): Nutrient requirements of fish and shrimp , 2011, Aquaculture International.

[32]  C. Anbazhagan,et al.  Microalgae: a sustainable feed source for aquaculture , 2011 .

[33]  Y. Chisti,et al.  Protein measurements of microalgal and cyanobacterial biomass. , 2010, Bioresource technology.

[34]  F. G. Barroso,et al.  Effect of diets containing a purified soybean trypsin inhibitor on growth performance, digestive proteases and intestinal histology in juvenile sea bream (Sparus aurata L.) , 2010 .

[35]  Shamim Ahmed,et al.  DETERMINATION OF IN VITRO PROTEIN DIGESTIBILITY OF DIFFERENT FEED INGREDIENTS FOR NILOTICA (Oreochromis nilotica) , 2010 .

[36]  F. Moyano,et al.  Optimization of a gastrointestinal model applicable to the evaluation of bioaccessibility in fish feeds , 2009 .

[37]  Guoyao Wu,et al.  New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds , 2009, Amino Acids.

[38]  M. Metian,et al.  Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects , 2008 .

[39]  K. Dąbrowski,et al.  Expanding the utilization of sustainable plant products in aquafeeds: a review , 2007 .

[40]  E. Becker Micro-algae as a source of protein. , 2007, Biotechnology advances.

[41]  K. Mai,et al.  Dietary lysine requirement of juvenile Japanese seabass, Lateolabrax japonicus , 2006 .

[42]  H. Peres,et al.  The effect of dietary protein replacement by crystalline amino acid on growth and nitrogen utilization of turbot Scophthalmus maximus juveniles , 2005 .

[43]  K. Radha,et al.  Growth and development of catla (Catla catla) fed with different levels of diet containing Spirogyra sp. , 2004, Bioresource technology.

[44]  F. Alarcón,et al.  Use of SDS-page in the assessment of protein hydrolysis by fish digestive enzymes , 2001, Aquaculture International.

[45]  F. Alarcón,et al.  Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex) , 1998, Fish Physiology and Biochemistry.

[46]  D. Houlihan,et al.  Effects of dietary amino acid profile on growth performance, key metabolic enzymes and somatotropic axis responsiveness of gilthead sea bream (Sparus aurata) , 2003 .

[47]  T. Cabello,et al.  Digestive proteases during development of larvae of red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). , 2002, Insect biochemistry and molecular biology.

[48]  F. Alarcón,et al.  Effect of inhibitors present in protein sources on digestive proteases of juvenile sea bream (Sparus aurata) , 1999 .

[49]  Malcolm R. Brown,et al.  Nutritional properties of microalgae for mariculture , 1997 .

[50]  N. Haard,et al.  Estimation of protein digestibility—IV. Digestive proteinases from the pyloric caeca of coho salmon (Oncorhynchus kisutch) fed diets containing soybean meal , 1996 .

[51]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[52]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[53]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[54]  M. Slabaugh [Amino acids and proteins]. , 1953, Bulletin de la Societe de chimie biologique.