Eigenvalue problem and a new product in cohomology of flag varieties

Let G be a connected semisimple complex algebraic group and let P be a parabolic subgroup. In this paper we define a new (commutative and associative) product on the cohomology of the homogenous spaces G/P and use this to give a more efficient solution of the eigenvalue problem and also for the problem of determining the existence of G-invariants in the tensor product of irreducible representations of G. On the other hand, we show that this new product is intimately connected with the Lie algebra cohomology of the nil-radical of P via some works of Kostant and Kumar. We also initiate a uniform study of the geometric Horn problem for an arbitrary group $G$ by obtaining two (a priori) different sets of necessary recursive conditions to determine when a cohomology product of Schubert classes in G/P is non-zero. Hitherto, this was studied largely only for the group \SL(n).

[1]  Chris Woodward,et al.  Eigenvalues of products of unitary matrices and quantum Schubert calculus , 1997 .

[2]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[3]  S. Donkin Review: Jens Carsten Jantzen, Representations of algebraic groups , 1989 .

[4]  A. Klyachko Stable bundles, representation theory and Hermitian operators , 1998 .

[5]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[6]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.

[7]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone , 2001, math/0107011.

[8]  M. Kapovich,et al.  The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra , 2002, math/0210256.

[9]  The generalized triangle inequalities for rank 3 symmetric spaces of noncompact type. , 2003, math/0303264.

[10]  David Mumford,et al.  Geometric invariant theory, Third Edition , 1994, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[11]  Prakash Belkale,et al.  Local Systems on P1 - S for S a Finite Set , 2001, Compositio Mathematica.

[12]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[13]  W. Hesselink Uniform instability in reductive groups. , 1978 .

[14]  P. Belkale Invariant theory of GL(n) and intersection theory of Grassmannians , 2004 .

[15]  Jean-Pierre Serre,et al.  Complex Semisimple Lie Algebras , 1987 .

[16]  Shrawan Kumar,et al.  Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .

[17]  F. Kirwan Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 , 1984 .

[18]  G. Kempf,et al.  Instability in invariant theory , 1978, 1807.02890.

[19]  B Kostant,et al.  The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[20]  The Quantum Horn Conjecture , 2003 .

[21]  I. Shafarevich Basic algebraic geometry , 1974 .

[22]  I. Gel'fand,et al.  SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P , 1973 .

[23]  B. Kostant,et al.  The Nil Hecke Ring and Cohomology of , 2003 .

[24]  C. Woodward,et al.  Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants , 2003 .

[25]  Reyer Sjamaar Coadjoint Orbits, Moment Polytopes . . . , 1999 .

[26]  S. Ramanan,et al.  Some remarks on the instability flag , 1984 .

[27]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[28]  Prakash Belkale Geometric proofs of horn and saturation conjectures , 2002 .

[29]  B. Kostant Lie Algebra Cohomology and the Generalized Borel-Weil Theorem , 1961 .

[30]  Basic Theory,et al.  Kac-Moody Groups , 2002 .

[31]  Parabolic bundles, products of conjugacy classes, and quantum cohomology , 2000, math/0012241.

[32]  J. Millson,et al.  Convex functions on symmetric spaces and geometric invariant theory for spaces of weighted configurations on flag manifolds , 2003 .

[33]  Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity , 2003, math/0311486.

[34]  B. Kostant,et al.  Lie Algebra Cohomology and Generalized Schubert Cells , 1963 .

[35]  C. Wampler,et al.  Basic Algebraic Geometry , 2005 .

[36]  Reyer Sjamaar Convexity Properties of the Moment Mapping Re-examined☆ , 1994 .

[37]  Steven L. Kleiman,et al.  The transversality of a general translate , 1974 .

[38]  J. Jantzen Representations of algebraic groups , 1987 .

[39]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .