Nonhomogeneous $T(1)$ Theorem on Product Quasimetric Spaces

In this paper, we provide a non-homogeneous T (1) theorem on product spaces (X1 ×X2, ρ1 × ρ2, μ1×μ2) equipped with a quasimetric ρ1× ρ2 and a Borel measure μ1×μ2, which, need not be doubling but satisfies an upper control on the size of quasiballs.

[1]  E. Stein,et al.  H theory for the poly-disc. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A characterization of product BMO by commutators , 2001 .

[3]  S. Chang Carleson Measure on the Bi-Disc , 1979 .

[4]  Ana Grau de la Herr'an Comparison of T1 conditions for multiparameter operators , 2014, 1403.7968.

[5]  G. David,et al.  A boundedness criterion for generalized Caldéron-Zygmund operators , 1984 .

[6]  X. Tolsa A T(1) Theorem for Non‐Doubling Measures with Atoms , 2001 .

[7]  Yumeng Ou A T(b) Theorem on Product Spaces , 2013, 1305.1691.

[8]  T. Hytonen,et al.  The Hardy space H1 on non-homogeneous metric spaces , 2010, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Richard Rochberg,et al.  Carleson measures for analytic Besov spaces , 2002 .

[10]  R. Fefferman Harmonic analysis on product spaces , 1987 .

[11]  T. Hytönen,et al.  Non-homogeneous Tb Theorem and Random Dyadic Cubes on Metric Measure Spaces , 2009, 0911.4387.

[12]  Yongsheng Han,et al.  Duality of multiparameter Hardy spaces Hp on spaces of homogeneous type , 2010 .

[13]  X. Domènech BMO, H^1, and Calderon-Zygmund operators for non doubling measures , 2001 .

[14]  R. Fefferman Calderón-Zygmund theory for product domains: H spaces. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Kangwei Li,et al.  Bilinear Calderón–Zygmund theory on product spaces , 2017, 1712.08135.

[16]  J. Pipher,et al.  Journé’s covering lemma and its extension to higher dimensions , 1986 .

[17]  T. Hytonen A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa , 2009, 0909.3231.

[18]  T. Hytonen,et al.  Non-homogeneous T1 theorem for bi-parameter singular integrals , 2012, 1209.4473.

[19]  Fedor Nazarov,et al.  TheTb-theorem on non-homogeneous spaces , 2003 .

[20]  Dachun Yang,et al.  The Hardy Space H1 with Non-doubling Measures and Their Applications , 2014 .

[21]  R. Fefferman,et al.  Bounded mean oscillation on the polydisk , 1979 .

[22]  J. Journé Calderón-Zygmund operators on product spaces. , 1985 .

[23]  X. Tolsa THE SPACE H 1 FOR NONDOUBLING MEASURES IN TERMS OF A GRAND MAXIMAL OPERATOR , 2002 .

[24]  G. David,et al.  Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation , 1985 .

[25]  T. Hytonen,et al.  Systems of dyadic cubes in a doubling metric space , 2010, 1012.1985.

[26]  Littlewood–Paley Theory and the T(1) Theorem with Non-doubling Measures , 2000, math/0006039.

[27]  R. Wheeden,et al.  Weighted Inequalities for Fractional Integrals on Euclidean and Homogeneous Spaces , 1992 .

[28]  Henri Martikainen Representation of bi-parameter singular integrals by dyadic operators , 2011, 1110.1890.

[29]  E. Stein,et al.  Singular integrals on product spaces , 1982 .

[30]  Ronald R. Coifman,et al.  Analyse harmonique non-commutative sur certains espaces homogènes : étude de certaines intégrales singulières , 1971 .

[31]  R. Fefferman,et al.  THE CALDERON-ZYGMUND DECOMPOSITION ON PRODUCT DOMAINS , 1982 .