Quantum dynamics in splitting a harmonically trapped Bose-Einstein condensate by an optical lattice: Truncated Wigner approximation

We study the splitting of a harmonically trapped atomic Bose-Einstein condensate when we continuously turn up an optical lattice, or a double-well, potential. As the lattice height is increased, quantum fluctuations of atoms are enhanced. The resulting nonequilibrium dynamics of the fragmentation process of the condensate, the loss of the phase coherence of atoms along the lattice, and the reduced atom number fluctuations in individual lattice sites are stochastically studied within the truncated Wigner approximation. We perform a detailed study of the effects of temperature and lattice height on atom dynamics, and investigate the validity of the classical Gross-Pitaevskii equation in optical lattices. We find the atom number squeezing to saturate in deep lattices due to nonadiabaticity in turning up of the lattice potential that is challenging to avoid in experiments when the occupation number of the lattice sites is large, making it difficult to produce strongly number squeezed, or the Mott insulator, states with large filling factors. We also investigate some general numerical properties of the truncated Wigner approximation.

[1]  W. Reinhardt,et al.  Mean-field effects may mimic number squeezing in Bose-Einstein condensates in optical lattices , 2006 .

[2]  W. Ketterle,et al.  Evidence for superfluidity of ultracold fermions in an optical lattice , 2006, Nature.

[3]  Janne Ruostekoski,et al.  Symbolic calculation in development of algorithms: split-step methods for the Gross–Pitaevskii equation , 2006 .

[4]  M. Oberthaler,et al.  Noise thermometry with two weakly coupled Bose-Einstein condensates. , 2006, Physical review letters.

[5]  M. Kasevich,et al.  Nonequilibrium coherence dynamics of a soft boson lattice , 2005, cond-mat/0504762.

[6]  W. Ketterle,et al.  Sodium Bose-Einstein condensates in an optical lattice (6 pages) , 2005, cond-mat/0507288.

[7]  Z. Dutton,et al.  Engineering vortex rings and systems for controlled studies of vortex interactions in Bose-Einstein condensates , 2005, cond-mat/0507032.

[8]  L. Isella,et al.  Dissipative quantum dynamics of bosonic atoms in a shallow 1D optical lattice. , 2005, Physical review letters.

[9]  P. Zoller,et al.  Atomic quantum simulator for lattice gauge theories and ring exchange models. , 2005, Physical review letters.

[10]  M. Lewenstein,et al.  Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.

[11]  M. Modugno,et al.  Unstable regimes for a Bose-Einstein condensate in an optical lattice (10 pages) , 2004, cond-mat/0412279.

[12]  P. Zoller,et al.  The cold atom Hubbard toolbox , 2004, cond-mat/0410614.

[13]  S. Rolston,et al.  Strongly inhibited transport of a degenerate 1D Bose gas in a lattice. , 2004, Physical review letters.

[14]  T. Esslinger,et al.  Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. , 2004, Physical review letters.

[15]  L. Isella,et al.  Nonadiabatic dynamics of a Bose-Einstein condensate in an optical lattice , 2004, cond-mat/0409475.

[16]  J. Ruostekoski,et al.  Split-step Fourier methods for the Gross-Pitaevskii equation , 2004, cond-mat/0411154.

[17]  L. Cederbaum,et al.  Ground-state fragmentation of repulsive Bose-Einstein condensates in double-trap potentials , 2004, cond-mat/0407516.

[18]  Immanuel Bloch,et al.  Tonks–Girardeau gas of ultracold atoms in an optical lattice , 2004, Nature.

[19]  J. Dalibard,et al.  Interference of an array of independent Bose-Einstein condensates. , 2004, Physical review letters.

[20]  E. Rico,et al.  Effective three-body interactions in triangular optical lattices (10 pages) , 2004, quant-ph/0404048.

[21]  M. Modugno,et al.  Observation of dynamical instability for a Bose-Einstein condensate in a moving 1D optical lattice. , 2004, Physical review letters.

[22]  J. Plata Loading of a Bose-Einstein condensate into an optical lattice: The excitation of collective modes , 2004 .

[23]  M. Lewenstein,et al.  Atomic fermi-bose mixtures in inhomogeneous and random lattices: from fermi glass to quantum spin glass and quantum percolation. , 2004, Physical review letters.

[24]  J. Cirac,et al.  Atomic quantum gases in Kagomé lattices. , 2004, Physical review letters.

[25]  T. Esslinger,et al.  Transition from a strongly interacting 1d superfluid to a Mott insulator. , 2003, Physical review letters.

[26]  A. Polkovnikov,et al.  Effect of quantum fluctuations on the dipolar motion of bose-einstein condensates in optical lattices. , 2003, Physical review letters.

[27]  J. V. Porto,et al.  Adiabatic loading of bosons into optical lattices , 2003, cond-mat/0307655.

[28]  J. Ruostekoski,et al.  Optical detection of fractional particle number in an atomic Fermi-Dirac gas. , 2003, Physical review letters.

[29]  M. Inguscio,et al.  Production of a Fermi gas of atoms in an optical lattice , 2003, cond-mat/0304242.

[30]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[31]  A. Polkovnikov Evolution of the macroscopically entangled states in optical lattices , 2003, cond-mat/0303629.

[32]  M. Yamashita,et al.  Signatures of the quantum fluctuations of cold atoms in an optical lattice in the three-body loss rate , 2003 .

[33]  A. Leggett,et al.  Phase dynamics after connection of two separate Bose-Einstein condensates , 2002, cond-mat/0212604.

[34]  P. Drummond,et al.  Pair correlations in a finite-temperature 1D Bose gas. , 2002, Physical review letters.

[35]  T. Hänsch,et al.  Collapse and revival of the matter wave field of a Bose–Einstein condensate , 2002, Nature.

[36]  C. Clark,et al.  The Bogoliubov approach to number squeezing of atoms in an optical lattice , 2002 .

[37]  J. Ruostekoski,et al.  Particle number fractionalization of an atomic Fermi-Dirac gas in an optical lattice. , 2002, Physical review letters.

[38]  C. Gardiner,et al.  The stochasticGross-Pitaevskii equation , 2002 .

[39]  K. Rzążewski,et al.  Thermodynamics of an interacting trapped Bose-Einstein gas in the classical field approximation , 2002, cond-mat/0203259.

[40]  K. Burnett,et al.  Simulations of thermal Bose fields in the classical limit , 2002, cond-mat/0201571.

[41]  A. Sinatra,et al.  The truncated Wigner method for Bose-condensed gases: limits of validity and applications , 2002, cond-mat/0201217.

[42]  M. Trippenbach,et al.  Bose-Einstein condensates in time-dependent light potentials: Adiabatic and nonadiabatic behavior of nonlinear wave equations , 2002, cond-mat/0201123.

[43]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[44]  P. Maddaloni,et al.  Quasi-2D Bose-Einstein condensation in an optical lattice , 2001, cond-mat/0108037.

[45]  Universidade Federal Fluminense,et al.  Beyond the Fokker-Planck equation: Stochastic simulation of complete Wigner representation for the optical parametric oscillator , 2001, quant-ph/0108128.

[46]  J. H. Müller,et al.  Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices. , 2001, Physical review letters.

[47]  R. Duine,et al.  Stochastic dynamics of a trapped Bose-Einstein condensate , 2001, cond-mat/0107432.

[48]  T. Hänsch,et al.  Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. , 2001, Physical review letters.

[49]  M. Kasevich,et al.  Squeezed States in a Bose-Einstein Condensate , 2001, Science.

[50]  J. Ruostekoski,et al.  Creating vortex rings and three-dimensional skyrmions in Bose-Eeinstein condensates. , 2001, Physical review letters.

[51]  M. Tosi,et al.  Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential. , 2001, Physical review letters.

[52]  A. Sinatra,et al.  Classical-field method for time dependent Bose-Einstein condensed gases. , 2001, Physical review letters.

[53]  K. Burnett,et al.  Simulations of Bose fields at finite temperature. , 2000, Physical review letters.

[54]  J. Corney,et al.  Quantum noise in optical fibers. I. Stochastic equations , 1999, quant-ph/9912095.

[55]  P. D. Drummond,et al.  Quantum noise in optical fibers. II. Raman jitter in soliton communications , 1999, quant-ph/9912096.

[56]  J. Javanainen Phonon approach to an array of traps containing Bose-Einstein condensates , 1999 .

[57]  M. Ivanov,et al.  Splitting a trap containing a Bose-Einstein condensate: Atom number fluctuations , 1999 .

[58]  M. Gehm,et al.  Ultrastable CO 2 Laser Trapping of Lithium Fermions , 1999, physics/0003049.

[59]  M. Kasevich,et al.  Macroscopic quantum interference from atomic tunnel arrays , 1998, Science.

[60]  J. Söding,et al.  Three-body decay of a rubidium Bose–Einstein condensate , 1998, cond-mat/9811339.

[61]  R. Graham,et al.  DYNAMICAL QUANTUM NOISE IN TRAPPED BOSE-EINSTEIN CONDENSATES , 1998, cond-mat/9807349.

[62]  Klaus Mølmer,et al.  PHASE COLLAPSE AND EXCITATIONS IN BOSE-EINSTEIN CONDENSATES , 1998 .

[63]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[64]  D. Walls,et al.  BOSE-EINSTEIN CONDENSATE IN A DOUBLE-WELL POTENTIAL AS AN OPEN QUANTUM SYSTEM , 1998, cond-mat/9803298.

[65]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.

[66]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[67]  Peter D. Drummond,et al.  Simulation of Quantum Effects in Raman-Active Waveguides , 1993 .

[68]  A. Leggett,et al.  On the concept of spontaneously broken gauge symmetry in condensed matter physics , 1991 .

[69]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.