Suppressing the cellular breakdown in silicon supersaturated with titanium

Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.

[1]  A. Luque,et al.  Room temperature photo-response of titanium supersaturated silicon at energies over the bandgap , 2016 .

[2]  Fang Liu,et al.  Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy , 2015, Scientific Reports.

[3]  H. Efstathiadis,et al.  On the limits to Ti incorporation into Si using pulsed laser melting , 2014 .

[4]  T. Buonassisi,et al.  Supersaturating silicon with transition metals by ion implantation and pulsed laser melting , 2013 .

[5]  Meifang Zhu,et al.  Insulator-to-metal transition in heavily Ti-doped silicon thin film , 2013 .

[6]  I. Mártil,et al.  Electrical decoupling effect on intermediate band Ti-implanted silicon layers , 2013 .

[7]  H. Castán,et al.  Experimental verification of intermediate band formation on titanium-implanted silicon , 2013 .

[8]  A. Muñoz-Martín,et al.  Interstitial Ti for intermediate band formation in Ti-supersaturated silicon , 2012 .

[9]  J. Grossman,et al.  Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. , 2011, Physical review letters.

[10]  Eric Mazur,et al.  Insulator-to-metal transition in sulfur-doped silicon. , 2011, Physical review letters.

[11]  I. Umezu,et al.  Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting , 2010 .

[12]  I. Mártil,et al.  Electronic transport properties of Ti-impurity band in Si , 2009 .

[13]  Antonio Luque,et al.  Intermediate bands versus levels in non-radiative recombination , 2006 .

[14]  M. Aziz,et al.  Strong Sub-band-gap Infrared Absorption in Silicon Supersaturated with Sulfur , 2006 .

[15]  F. Roozeboom,et al.  Impurity redistribution due to recrystallization of preamorphized silicon , 2005 .

[16]  W. Skorupa,et al.  Advanced Thermal Processing of Ultrashallow Implanted Junctions Using Flash Lamp Annealing , 2005 .

[17]  Michael O. Thompson,et al.  Complete experimental test of kinetic models for rapid alloy solidification , 2000 .

[18]  Michael J. Aziz,et al.  Solute Trapping of Group III, IV, and V Elements in Silicon by an Aperiodic Stepwise Growth Mechanism , 1994 .

[19]  R. Elliman,et al.  The effect of temperature and doping on the segregation of In during solid‐phase‐epitaxial crystallization of Si , 1993 .

[20]  Chang,et al.  Double-resonance-enhanced Raman scattering in laser-recrystallized amorphous silicon film. , 1989, Physical Review B (Condensed Matter).

[21]  D. Mathiot,et al.  Titanium diffusion in silicon , 1988 .

[22]  M. Aziz,et al.  Aperiodic stepwise growth model for the velocity and orientation dependence of solute trapping , 1987 .

[23]  Lawrence R. Doolittle,et al.  Algorithms for the rapid simulation of Rutherford backscattering spectra , 1985 .

[24]  N. G. Chew,et al.  Orientation dependence of high speed silicon crystal growth from the melt , 1984 .

[25]  J. Narayan Development of morphological instability and formation of cells in silicon alloys during pulsed laser irradiation , 1982 .

[26]  A. G. Cullis,et al.  Transitions to Defective Crystal and the Amorphous State Induced in Elemental Si by Laser Quenching , 1982 .

[27]  S. Kokorowski,et al.  Kinetics of laser‐induced solid phase epitaxy in amorphous silicon films , 1982 .

[28]  N. G. Chew,et al.  Growth interface breakdown during laser recrystallization from the melt , 1981 .

[29]  J. Narayan Interface instability and cell formation in ion‐implanted and laser‐annealed silicon , 1981 .

[30]  B. Appleton,et al.  Kinetic effects and mechanisms limiting substitutional solubility in the formation of supersaturated alloys by pulsed laser annealing , 1980 .

[31]  S. U. Campisano,et al.  Solute trapping by moving interface in ion‐implanted silicon , 1980 .

[32]  F. A. Kröger,et al.  Defect pairing diffusion, and solubility studies in selenium‐doped silicon , 1978 .

[33]  T. Venkatesan,et al.  Dose dependence in the laser annealing of arsenic-implanted silicon , 1978 .

[34]  J. Poate,et al.  Spatially controlled crystal regrowth of ion‐implanted silicon by laser irradiation , 1978 .

[35]  J. Mayer,et al.  Structure of crystallized layers by laser annealing of 〈100〉 and 〈111〉 self-implanted silicon samples , 1978 .

[36]  R. Prim,et al.  The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical , 1953 .

[37]  R. Hall,et al.  Sulfur in silicon , 1959 .