Stellar inventory of the solar neighbourhood using Gaia DR1

The absolute number and the density profiles of different types of stars in the solar neighborhood are a fundamental anchor for studies of the initial mass function, stellar evolution, and galactic structure. Using data from the Gaia DR1 Tycho-Gaia Astrometric Solution, we reconstruct Gaia's selection function and we determine Gaia's volume completeness, the local number density, and the vertical profiles of different spectral types along the main sequence from early A stars to late K stars as well as along the giant branch. We clearly detect the expected flattening of the stellar density profile near the mid-plane for all stellar types: All vertical profiles are well represented by sech^2 profiles, with scale heights ranging from ~50 pc for A stars to ~150 pc for G and K dwarfs and giants. We determine the luminosity function along the main sequence for M_V ~ $0.72 M_\odot$) and along the giant branch for M_J >~ -2.5. Converting this to a mass function, we find that the high-mass (M > $1\,M_\odot$) present-day mass function along the main sequence is d n / d M = 0.016 $(M/M_\odot)^{-4.7}$ stars/pc^3/$M_\odot$. Extrapolating below M = $0.72\,M_\odot$, we find a total mid-plane stellar density of 0.040+/-0.002 $M_\odot$/pc^3. Giants contribute 0.00039+/-0.00001 stars/pc^3 or about 0.00046+/-0.00005 $M_\odot$/pc^3. The star-formation rate surface density is \Sigma(t) = 7+/-1 exp(-t/[7+/-1 Gyr]) $M_\odot$/pc^2/Gyr. Surprisingly, we find that the Sun is exactly at the mid-plane defined by A and F stars (zsun = -0.9+/-0.9 pc), but appears to be offset from the mid-plane defined by older stars (zsun = 29+/-4 pc with respect to giants). Overall, we find that Gaia DR1's selection biases are manageable and allow a detailed new inventory of the solar neighborhood to be made that agrees with and extends previous studies. This bodes well for mapping the Milky Way with the full Gaia data set.

[1]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[2]  R. Michael Rich,et al.  The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End , 2007, 0706.3894.

[3]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[4]  Y. Joshi Displacement of the Sun from the Galactic plane , 2007, 0704.0950.

[5]  Eugene Magnier,et al.  A THREE-DIMENSIONAL MAP OF MILKY WAY DUST , 2015, 1507.01005.

[6]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[7]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[8]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[9]  M. Schultheis,et al.  Modelling the Galactic Interstellar Extinction Distribution in Three Dimensions , 2005, astro-ph/0604427.

[10]  D. Froebrich,et al.  Properties of star clusters – II. Scaleheight evolution of clusters , 2014, 1407.4611.

[11]  Bart J. Bok,et al.  The distribution of the stars in space , 1937 .

[12]  J. Bovy,et al.  DETECTION OF A DEARTH OF STARS WITH ZERO ANGULAR MOMENTUM IN THE SOLAR NEIGHBORHOOD , 2016, 1610.02030.

[13]  R. Drimmel,et al.  A three-dimensional Galactic extinction model , 2003, astro-ph/0307273.

[14]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[15]  C. Barache,et al.  Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes , 2016, 1609.04303.

[16]  J. Binney Radial mixing in galactic discs , 2002, astro-ph/0203510.

[17]  Andrew Gould,et al.  Disk M Dwarf Luminosity Function From HST Star Counts , 1995 .

[18]  Douglas P. Finkbeiner,et al.  ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION , 2015, 1509.06751.

[19]  Y. Sofue,et al.  Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: II. The Molecular Gas Disk , 2006, astro-ph/0610769.

[20]  James Binney,et al.  Chemical evolution with radial mixing , 2008, 0809.3006.

[21]  S. Joshi,et al.  Study of open clusters within 1.8 kpc and understanding the Galactic structure , 2016, 1606.06425.

[22]  D. York,et al.  Stellar Population Studies with the SDSS. I. The Vertical Distribution of Stars in the Milky Way , 2001 .

[23]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[24]  John N. Bahcall,et al.  Star counts and galactic structure , 1986 .

[25]  C. Bailer-Jones,et al.  Estimating Distances from Parallaxes , 2015, 1507.02105.

[26]  Hans-Walter Rix,et al.  A DIRECT DYNAMICAL MEASUREMENT OF THE MILKY WAY'S DISK SURFACE DENSITY PROFILE, DISK SCALE LENGTH, AND DARK MATTER PROFILE AT 4 kpc ≲ R ≲ 9 kpc , 2013, 1309.0809.

[27]  G. Chabrier The Galactic Disk Mass Budget. I. Stellar Mass Function and Density , 2001 .

[28]  Heidelberg,et al.  ESTIMATING DISTANCES FROM PARALLAXES. III. DISTANCES OF TWO MILLION STARS IN THE Gaia DR1 CATALOGUE , 2016, 1609.07369.

[29]  Coryn A. L. Bailer-Jones,et al.  ESTIMATING DISTANCES FROM PARALLAXES. II. PERFORMANCE OF BAYESIAN DISTANCE ESTIMATORS ON A GAIA-LIKE CATALOGUE , 2016, 1609.03424.

[30]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[31]  D. Hollenbach,et al.  STARS, GAS, AND DARK MATTER IN THE SOLAR NEIGHBORHOOD , 2015, 1509.05334.

[32]  B. Cameron Reed,et al.  New Estimates of the Scale Height and Surface Density of OB Stars in the Solar Neighborhood , 2000 .

[33]  David W. Hogg,et al.  THE MILKY WAY HAS NO DISTINCT THICK DISK , 2011, 1111.6585.

[34]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[35]  A. Helmi,et al.  A box full of chocolates: The rich structure of the nearby stellar halo revealed by Gaia and RAVE , 2016, 1611.00222.

[36]  Walter Dehnen,et al.  The age of the solar neighbourhood , 2000 .

[37]  M. Cropper,et al.  The Rotation-Metallicity Relation for the Galactic Disk as Measured in the Gaia DR1 TGAS and APOGEE Data , 2016, 1609.07821.

[38]  J. Binney,et al.  Kinematics and history of the solar neighbourhood revisited , 2009, 0905.2512.

[39]  Eugene Magnier,et al.  MEASURING DISTANCES AND REDDENINGS FOR A BILLION STARS: TOWARD A 3D DUST MAP FROM PAN-STARRS 1 , 2014, 1401.1508.

[40]  C. Flynn,et al.  The local density of matter mapped by hipparcos , 1998, astro-ph/9812404.

[41]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[42]  J. Bovy Galactic rotation in Gaia DR1 , 2016, 1610.07610.

[43]  C. Flynn,et al.  On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy , 2006, astro-ph/0608193.

[44]  E. Bica,et al.  Probing disk properties with open clusters , 2005 .

[45]  UK,et al.  The photometric structure of the inner Galaxy , 1997 .

[46]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[47]  D. Hogg,et al.  Hierarchical Probabilistic Inference of the Color–Magnitude Diagram and Shrinkage of Stellar Distance Uncertainties , 2017, 1703.08112.

[48]  S. Malhotra,et al.  The Vertical Distribution and Kinematics of H i and Mass Models of the Galactic Disk , 1994, astro-ph/9411088.

[49]  Suzanne L. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey. IV. The Luminosity Function in the Solar Neighborhood and M Dwarf Kinematics , 2002 .

[50]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.