Carbon origami: A method to fabricate lightweight carbon cellular materials

Abstract We present the fabrication of lightweight cellular carbon materials using an origami-inspired technique. Complex, porous shapes are fabricated by carbonizing an origami structure made by pre-creasing and manual folding a flat piece of pure cellulosic paper. This relatively simple process yields carbon origami shapes that feature density as low as 0.014 ± 0.005 g/cm3, 0.93% the density of bulk glassy carbon. Yet, the specific stiffness of this carbon origami and its capability to transfer load compare advantageously to other lightweight cellular materials such as carbon nanotube foams, graphene elastomers, metallic microlattices, silica aerogel, and carbon foams. Such promising mechanical properties coupled to the high temperature resistance and excellent chemical and electrochemical stability of carbon positions carbon origami as a candidate to fabricate lightweight, multifunctional materials.

[1]  N. Fleck,et al.  Collapse of truss core sandwich beams in 3-point bending , 2001 .

[2]  R. Craig,et al.  Glassy carbon: a potential dental implant material. , 1973, Journal of biomedical materials research.

[3]  R. Martinez-Duarte,et al.  Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis. , 2016, Biomicrofluidics.

[4]  Sergei O. Kucheyev,et al.  Mechanically robust and electrically conductive carbon nanotube foams , 2009 .

[5]  Koryo Miura,et al.  Method of Packaging and Deployment of Large Membranes in Space , 1985 .

[6]  Alastair Johnson,et al.  Sandwich structures with textile-reinforced composite foldcores under impact loads , 2010 .

[7]  M. Buehler,et al.  The mechanics and design of a lightweight three-dimensional graphene assembly , 2017, Science Advances.

[8]  Robin J. Wootton,et al.  Two basic mechanisms in insect wing folding , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  Fei Jia,et al.  Anisotropic growth shapes intestinal tissues during embryogenesis , 2013, Proceedings of the National Academy of Sciences.

[10]  J. Knowles,et al.  Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam , 2002, Journal of materials science. Materials in medicine.

[11]  Martin A. Hubbe,et al.  WHAT HAPPENS TO CELLULOSIC FIBERS DURING PAPERMAKING AND RECYCLING? A REVIEW , 2007 .

[12]  Hongzhang Chen Biotechnology of Lignocellulose , 2014, Springer Netherlands.

[13]  B. Dickens Thermally degrading polyethylene studied by means of factor‐jump thermogravimetry , 1982 .

[14]  T. Johnson Diesel Emission Control in Review , 2001 .

[15]  Goran Konjevod,et al.  Origami based Mechanical Metamaterials , 2014, Scientific Reports.

[16]  G. Whitesides,et al.  Fabrication of glassy carbon microstructures by soft lithography , 1999 .

[17]  Alberto Ortona,et al.  Carbon periodic cellular architectures , 2015 .

[18]  C. Lim,et al.  Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system , 2015 .

[19]  Akio Namiki,et al.  Robotic origami folding with dynamic motion primitives , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[20]  J. Warzywoda,et al.  Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries , 2017 .

[21]  Yasuyoshi Yokokohji,et al.  Origami folding by a robotic hand , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  S D Guest,et al.  Deployable membranes designed from folding tree leaves , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  C. Liang,et al.  Preparation of free-standing high quality mesoporous carbon membranes , 2010 .

[24]  Il Keun Kwon,et al.  Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. , 2005, Biomaterials.

[25]  Weihua Tang,et al.  Facile synthesis of bacterial cellulose fibres covalently intercalated with graphene oxide by one-step cross-linking for robust supercapacitors , 2015 .

[26]  K. H. Shafer,et al.  Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis , 2001 .

[27]  Miao Huang,et al.  Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process , 2010, Molecules.

[28]  M. Ashby,et al.  The structure and mechanics of cork , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  K. Ando,et al.  Mechanism for deformation of wood as a honeycomb structure I: Effect of anatomy on the initial deformation process during radial compression , 1999, Journal of Wood Science.

[30]  A. Celzard,et al.  Mechanical properties of tannin-based rigid foams undergoing compression , 2010 .

[31]  Fabrizio Scarpa,et al.  Dynamic properties of high structural integrity auxetic open cell foam , 2004 .

[32]  Alar Jänes,et al.  Electroactive polymer actuators with carbon aerogel electrodes , 2011 .

[33]  Dimitris C. Lagoudas,et al.  Origami-inspired active structures: a synthesis and review , 2014 .

[34]  M. Ashby The properties of foams and lattices , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  R. Pekala,et al.  Organic aerogels: microstructural dependence of mechanical properties in compression , 1990 .

[36]  Q. Guo,et al.  Carbon foam: Preparation and application , 2015 .

[37]  N. V. Suryanarayana,et al.  Forced Convection: Internal Flows , 2017 .

[38]  S. Gu,et al.  The mechanism for thermal decomposition of cellulose and its main products. , 2009, Bioresource technology.

[39]  Jinhui Peng,et al.  Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars , 2008 .

[40]  Kenneth C. Cheung,et al.  Origami interleaved tube cellular materials , 2014 .

[41]  Alastair Johnson,et al.  Mechanical tests for foldcore base material properties , 2009 .

[42]  David Dureisseix,et al.  An Overview of Mechanisms and Patterns with Origami , 2012 .

[43]  Alfred H. Stiller,et al.  Carbon foam derived from various precursors , 2006 .

[44]  Kenji Umemura,et al.  Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles , 2007, Journal of Wood Science.

[45]  Mary C. Boyce,et al.  Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter , 2011 .

[46]  M. Poletto,et al.  Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes , 2011 .

[47]  Julian F. V. Vincent,et al.  The geometry of unfolding tree leaves , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  Xinwen Peng,et al.  Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture , 2016 .

[49]  Paul J. Dauenhauer,et al.  Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates , 2012 .

[50]  Dennis C. Nagle,et al.  Carbonization of wood for advanced materials applications , 1997 .

[51]  Jian S. Dai,et al.  An approach to carton-folding trajectory planning using dual robotic fingers , 2003, Robotics Auton. Syst..

[52]  F. Rodríguez-Reinoso,et al.  Preparation and characterization of active carbons from olive stones , 1980 .

[53]  R. Olives,et al.  NATURAL TANNIN-BASED RIGID FOAMS AS INSULATION FOR DOORS AND WALL PANELS , 2008 .

[54]  Tomás E. Benavidez,et al.  Development and Characterization of Carbon Based Electrodes from Pyrolyzed Paper for Biosensing Applications. , 2016, Journal of electroanalytical chemistry.

[55]  J. Brockmeyer,et al.  Application of Ceramic Foam Filters in Molten Metal Filtration , 2008 .

[56]  Dingcai Wu,et al.  Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer , 2013, Scientific Reports.

[57]  Tong Lin,et al.  High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. , 2015, ACS applied materials & interfaces.

[58]  W. Daud,et al.  The effects of carbonization temperature on pore development in palm-shell-based activated carbon , 2000 .

[59]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[60]  Hongzhang Chen,et al.  Biotechnology of Lignocellulose: Theory and Practice , 2014 .

[61]  Sophia S. Yang,et al.  Designing Metallic Microlattices for Energy Absorber Applications , 2014 .

[62]  L. Hrubesh,et al.  Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process , 1992 .

[63]  Mark Rasi Permeability properties of paper materials , 2013 .

[64]  Rudolph A. Olson,et al.  Cellular Ceramics in Metal Filtration , 2005 .

[65]  N. Pavlos,et al.  In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering , 2011, International journal of biological sciences.

[66]  Andre Knop,et al.  Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology , 1985 .

[67]  M. Letellier,et al.  Mechanical properties of model vitreous carbon foams , 2017 .

[68]  L. Manocha,et al.  Development of carbon foam from phenolic resin via template route , 2010 .

[69]  A. Lua,et al.  Effects of carbonisation atmosphere on the structural characteristics and transport properties of carbon membranes prepared from Kapton® polyimide , 2007 .

[70]  Tomohiro Tachi Geometric Considerations for the Design of Rigid Origami Structures , 2010 .

[71]  K. Prabhakaran,et al.  Preparation of carbon foams with enhanced oxidation resistance by foaming molten sucrose using a boric acid blowing agent , 2013 .

[72]  R. Xiao,et al.  The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass , 2013 .

[73]  Simon D. Guest,et al.  Origami folding: A Structural Engineering Approach , 2011 .

[74]  Daniel Chappard,et al.  Trabecular bone microarchitecture: a review. , 2008, Morphologie : bulletin de l'Association des anatomistes.

[75]  O. Kraft,et al.  Approaching theoretical strength in glassy carbon nanolattices. , 2016, Nature materials.

[76]  Gray,et al.  Technical Advance: Confocal measurement of the three-dimensional size and shape of plant parenchyma cells in a developing fruit tissue. , 1999, The Plant journal : for cell and molecular biology.

[77]  P. Kevrekidis,et al.  Formation of rarefaction waves in origami-based metamaterials. , 2015, Physical review. E.

[78]  Tomohiro Tachi,et al.  Programming curvature using origami tessellations. , 2016, Nature materials.

[79]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[80]  Biqiong Chen,et al.  Relative modulus-relative density relationships in low density polymer-clay nanocomposite foams , 2011 .

[81]  Soon-Young Jeong,et al.  Porous Layered Carbon as Catalyst Support Material for PEMFC , 2006 .

[82]  Tomás E. Benavidez,et al.  Synthesis of CuNP-Modified Carbon Electrodes Obtained by Pyrolysis of Paper. , 2016, Sensors and actuators. B, Chemical.

[83]  Yun Wang,et al.  Fabrication and characterization of micro PEM fuel cells using pyrolyzed carbon current collector plates , 2010 .

[84]  Levi H. Dudte,et al.  Geometric mechanics of periodic pleated origami. , 2012, Physical review letters.

[85]  Howon Lee,et al.  Ultralight, ultrastiff mechanical metamaterials , 2014, Science.

[86]  C. Sotiriou-Leventis,et al.  Nanoengineering Strong Silica Aerogels , 2002 .

[87]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[88]  Julia R. Greer,et al.  Protocols for the Optimal Design of Multi‐Functional Cellular Structures: From Hypersonics to Micro‐Architected Materials , 2011 .

[89]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[90]  Peihua Gu,et al.  Development of a paper-bag-folding machine using open architecture for adaptability , 2015 .

[91]  Á. Calafat,et al.  Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid , 1989 .

[92]  George M. Whitesides,et al.  Fabrication and Characterization of Glassy Carbon MEMS , 1997 .

[93]  Arthur Lebée,et al.  From Folds to Structures, a Review , 2015 .

[94]  Woon-Seong Kwon,et al.  Fundamental understanding of ACF conduction establishment with emphasis on the thermal and mechanical analysis , 2004 .