Asymptotic distribution for the cost of linear probing hashing

We study moments and asymptotic distributions of the construction cost, measured as the total displacement, for hash tables using linear probing. Four different methods are employed for different ranges of the parameters; together they yield a complete description. This extends earlier results by Flajolet, Poblete and Viola [On the analysis of linear probing hashing, Algorithmica 22 (1998), 490–515]. The average cost of unsuccessful searches is considered too. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 19: 438–471, 2001

[1]  J. Pitman Coalescent Random Forests , 1997 .

[2]  A. Konheim,et al.  An Occupancy Discipline and Applications , 1966 .

[3]  Edward M. Wright,et al.  The number of connected sparsely edged graphs , 1977, J. Graph Theory.

[4]  Jim Pitman,et al.  The standard additive coalescent , 1998 .

[5]  Philippe Flajolet,et al.  On the Analysis of Linear Probing Hashing , 1998, Algorithmica.

[6]  J. Kiefer,et al.  Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .

[7]  Joel Spencer ENUMERATING GRAPHS AND BROWNIAN MOTION , 1997 .

[8]  Lajos Takács,et al.  A bernoulli excursion and its various applications , 1991, Advances in Applied Probability.

[9]  Yu. L. Pavlov The Asymptotic Distribution of Maximum Tree Size in a Random Forest , 1978 .

[10]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[11]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[12]  Jean Bertoin,et al.  A fragmentation process connected to Brownian motion , 2000 .

[13]  Philippe Chassaing,et al.  Parking Functions, Empirical Processes, and the Width of Rooted Labeled Trees , 2001, Electron. J. Comb..

[14]  Jim Pitman,et al.  Arcsine Laws and Interval Partitions Derived from a Stable Subordinator , 1992 .

[15]  W. Vervaat,et al.  A Relation between Brownian Bridge and Brownian Excursion , 1979 .

[16]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[17]  G. Louchard The brownian excursion area: a numerical analysis , 1984 .

[18]  Donald E. Knuth Linear Probing and Graphs , 1998, Algorithmica.

[19]  Svante Janson,et al.  Moment convergence in conditional limit theorems , 2001, Journal of Applied Probability.

[20]  Guy Louchard,et al.  Phase Transition for Parking Blocks, Brownian Excursion and Coalescence , 2022 .

[21]  Svante Janson,et al.  A Vervaat-like path transformation for the reflected Brownian bridge conditioned on its local time at 0 , 2001 .

[22]  Lars Holst,et al.  Some Conditional Limit Theorems in Exponential Families , 1981 .

[23]  A. Barbour,et al.  Poisson Approximation , 1992 .

[24]  Lars Holst,et al.  Two Conditional Limit Theorems with Applications , 1979 .

[25]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[26]  Guy Louchard,et al.  KAC'S FORMULA, LEVY'S LOCAL TIME AND BROWNIAN EXCURSION , 1984 .

[27]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.