A Gel'fand-type spectral radius formula and stability of linear constrained switching systems

Using ergodic theory, in this paper we present a Gel'fand-type spectral radius formula which states that the joint spectral radius is equal to the generalized spectral radius for a matrix multiplicative semigroup $\bS^+$ restricted to a subset that need not carry the algebraic structure of $\bS^+$. This generalizes the Berger-Wang formula. Using it as a tool, we study the absolute exponential stability of a linear switched system driven by a compact subshift of the one-sided Markov shift associated to $\bS$.

[1]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[2]  Paul H. Siegel,et al.  On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[3]  Victor S. Kozyakin,et al.  Algebraic Unsolvability of Problem of Absolute Stability of Desynchronized Systems , 2013, 1301.5409.

[4]  Jairo Bochi,et al.  INEQUALITIES FOR NUMERICAL INVARIANTS OF SETS OF MATRICES , 2003 .

[5]  Robert K. Brayton,et al.  Constructive stability and asymptotic stability of dynamical systems , 1980 .

[6]  Ian D. Morris,et al.  The generalized Berger-Wang formula and the spectral radius of linear cocycles , 2009, 0906.2915.

[7]  Fabian R. Wirth,et al.  A Converse Lyapunov Theorem for Linear Parameter-Varying and Linear Switching Systems , 2005, SIAM J. Control. Optim..

[8]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[9]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[10]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[11]  Yongluo Cao,et al.  On growth rates of sub-additive functions for semi-flows: Determined and random cases , 2006 .

[12]  Matjaž Omladič,et al.  Irreducible semigroups with multiplicative spectral radius , 1997 .

[13]  Geir E. Dullerud,et al.  Uniformly Stabilizing Sets of Switching Sequences for Switched Linear Systems , 2007, IEEE Transactions on Automatic Control.

[14]  Xiongping Dai,et al.  Optimal state points of the subadditive ergodic theorem , 2011 .

[15]  Rob Sturman,et al.  Semi-uniform ergodic theorems and applications to forced systems , 2000 .

[16]  Xinlong Zhou,et al.  Characterization of joint spectral radius via trace , 2000 .

[17]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[18]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[19]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[20]  Viktor Vladimirovich Nemytskii Qualitative theory of differential equations , 1960 .

[21]  Yu Huang,et al.  Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities , 2011, Autom..

[22]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[23]  Yakov Pesin,et al.  The Multiplicative Ergodic Theorem , 2013 .

[24]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[25]  Nikita Sidorov,et al.  An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.

[26]  Alberto Bressan,et al.  Trajectories of differential inclusions with state constraints , 2011 .

[27]  M. W. Shields An Introduction to Automata Theory , 1988 .

[28]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[29]  Yu Huang,et al.  Realization of joint spectral radius via Ergodic theory , 2011 .

[30]  Gary Froyland,et al.  Coherent structures and isolated spectrum for Perron–Frobenius cocycles , 2008, Ergodic Theory and Dynamical Systems.

[31]  Nicola Guglielmi,et al.  On the zero-stability of variable stepsize multistep methods: the spectral radius approach , 2001, Numerische Mathematik.

[32]  Gilbert Strang,et al.  CONTINUITY OF THE JOINT SPECTRAL RADIUS: APPLICATION TO WAVELETS , 1995 .

[33]  Xiongping Dai,et al.  Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices , 2011 .

[34]  Sebastian J. Schreiber,et al.  On Growth Rates of Subadditive Functions for Semiflows , 1998 .

[35]  J. Kingman Subadditive Ergodic Theory , 1973 .

[36]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[37]  A. Bicchi,et al.  On the stabilization of linear discrete-time hybrid automata , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[38]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[39]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[40]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[41]  Ji-Woong Lee,et al.  Uniform stabilization of discrete-time switched and Markovian jump linear systems , 2006, Autom..

[42]  Geir E. Dullerud,et al.  Optimal Disturbance Attenuation for Discrete-Time Switched and Markovian Jump Linear Systems , 2006, SIAM J. Control. Optim..