Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression

Let $i=1,\ldots,N$ index a simple random sample of units drawn from some large population. For each unit we observe the vector of regressors $X_{i}$ and, for each of the $N\left(N-1\right)$ ordered pairs of units, an outcome $Y_{ij}$. The outcomes $Y_{ij}$ and $Y_{kl}$ are independent if their indices are disjoint, but dependent otherwise (i.e., "dyadically dependent"). Let $W_{ij}=\left(X_{i}',X_{j}'\right)'$; using the sampled data we seek to construct a nonparametric estimate of the mean regression function $g\left(W_{ij}\right)\overset{def}{\equiv}\mathbb{E}\left[\left.Y_{ij}\right|X_{i},X_{j}\right].$ We present two sets of results. First, we calculate lower bounds on the minimax risk for estimating the regression function at (i) a point and (ii) under the infinity norm. Second, we calculate (i) pointwise and (ii) uniform convergence rates for the dyadic analog of the familiar Nadaraya-Watson (NW) kernel regression estimator. We show that the NW kernel regression estimator achieves the optimal rates suggested by our risk bounds when an appropriate bandwidth sequence is chosen. This optimal rate differs from the one available under iid data: the effective sample size is smaller and $d_W=\mathrm{dim}(W_{ij})$ influences the rate differently.

[1]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[2]  Martin J. Wainwright,et al.  High-Dimensional Statistics , 2019 .

[3]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[4]  B. Graham Sparse Network Asymptotics for Logistic Regression , 2020, SSRN Electronic Journal.

[5]  Yukun Ma,et al.  Multiway Cluster Robust Double/Debiased Machine Learning , 2019 .

[6]  Bryan S. Graham,et al.  Kernel density estimation for undirected dyadic data , 2019, Journal of Econometrics.

[7]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[8]  B. Hansen UNIFORM CONVERGENCE RATES FOR KERNEL ESTIMATION WITH DEPENDENT DATA , 2008, Econometric Theory.

[9]  W. Newey,et al.  Kernel Estimation of Partial Means and a General Variance Estimator , 1994, Econometric Theory.

[10]  I. A. Ibragimov,et al.  Asymptotic bounds on the quality of the nonparametric regression estimation in , 1984 .

[11]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[12]  Peter M. Aronow,et al.  Cluster–Robust Variance Estimation for Dyadic Data , 2013, Political Analysis.

[13]  Bryan S. Graham,et al.  Network Data , 2019, Handbook of Econometrics.

[14]  E. Giné,et al.  Limit Theorems for $U$-Processes , 1993 .

[15]  O. Linton,et al.  A kernel method of estimating structured nonparametric regression based on marginal integration , 1995 .