Influence of Coadsorbed Water and Alcohol Molecules on Isopropyl Alcohol Dehydration on γ-Alumina: Multiscale Modeling of Experimental Kinetic Profiles

Successfully modeling the behavior of catalytic systems at different scales is a matter of importance not only for a fundamental understanding but also for a more rational design of catalysts and a more precise definition of the kinetic laws used as inputs in chemical engineering. We have developed here a multiscale modeling of the dehydration of isopropyl alcohol to propene and diisopropyl ether on γ-alumina catalysts, which clearly evidences and explains the central character of cooperative effects between coadsorbates in the kinetic network. The evolution of partial pressures with contact time was simulated using an original DFT-based microkinetic model based on a “macro site” centered on the main active site located on the (100) planes of alumina and comprising several neighboring adsorption sites. The formation of isopropyl alcohol–isopropyl alcohol or water–isopropyl alcohol dimers on the surface was required to correctly simulate the production of the minor product, diisopropyl ether, and the evolu...

[1]  W. H. Weinberg,et al.  Modeling the Kinetics of Heterogeneous Catalysis , 1995 .

[2]  N. Papayannakos,et al.  Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by hydrogen atoms. , 2014, The journal of physical chemistry. A.

[3]  M. Stamatakis,et al.  A review of multiscale modeling of metal-catalyzed reactions: Mechanism development for complexity and emergent behavior , 2011 .

[4]  The influence of lateral interactions on the critical behavior of a dimer–monomer surface reaction model , 1992 .

[5]  A. Hellman,et al.  Including lateral interactions into microkinetic models of catalytic reactions. , 2007, The Journal of chemical physics.

[6]  M. Kraus,et al.  Transient behavior of the system ethanol-diethyl ether-water-alumina , 1984 .

[7]  Céline Chizallet,et al.  Mechanistic Investigation of Isopropanol Conversion on Alumina Catalysts: Location of Active Sites for Alkene/Ether Production , 2015 .

[8]  E. Paukshtis,et al.  IR study of dynamic bahaviour of 2-propanol on alumina , 1988 .

[9]  R. Gorte,et al.  Structure–activity relationships on metal-oxides: alcohol dehydration , 2014 .

[10]  K. Reuter,et al.  Coverage- and temperature-controlled isomerization of an imine derivative on Au(111). , 2013, Journal of the American Chemical Society.

[11]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[12]  M. Kraus,et al.  Perturbation of steady-state catalytic dehydration of alcohols by pulses of water and other substances , 1985 .

[13]  Dionisios G. Vlachos,et al.  Multiscale modeling for emergent behavior, complexity, and combinatorial explosion , 2012 .

[14]  H. Knözinger,et al.  Influence of steric and inductive effects on product distributions in the dehydration of secondary alcohols on alumina , 1974 .

[15]  B. Davis,et al.  Alcohol Dehydration: Mechanism of Ether Formation Using an Alumina Catalyst , 1995 .

[16]  Philippe Sautet,et al.  Hydroxyl Groups on γ-Alumina Surfaces: A DFT Study , 2002 .

[17]  Céline Chizallet,et al.  Density functional theory simulations of complex catalytic materials in reactive environments: beyond the ideal surface at low coverage , 2014 .

[18]  D. Vlachos,et al.  Mechanistic Study of Alcohol Dehydration on γ-Al2O3 , 2012 .

[19]  James A. Miller,et al.  Predictive a priori pressure-dependent kinetics , 2014, Science.

[20]  B. Delmon,et al.  Role of the acid-base properties of aluminas, modified γ-alumina, and silica-alumina in 1-butanol dehydration , 1987 .

[21]  N. Papayannakos,et al.  Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by carbon-centered radicals. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[23]  H. Knözinger,et al.  The dehydration of alcohols on alumina: XIV. Reactivity and mechanism , 1972 .

[24]  Kevin Van Geem,et al.  First principle‐based simulation of ethane steam cracking , 2011 .

[25]  H. Knözinger,et al.  The dehydration of alcohols over alumina: VII. The dependence of reaction direction on the substrate structure , 1968 .

[26]  C. N. Pillai,et al.  Catalytic dehydration of alcohols over alumina: Mechanism of ether formation , 1967 .

[27]  Jens K Nørskov,et al.  A molecular view of heterogeneous catalysis. , 2008, The Journal of chemical physics.

[28]  Donghai Mei,et al.  The Origin of Regioselectivity in 2‐Butanol Dehydration on Solid Acid Catalysts , 2011 .

[29]  Guy Marin,et al.  Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: Ab initio and microkinetic modeling , 2015 .

[30]  G. Somorjai,et al.  Low energy electron diffraction studies of chemisorbed gases on stepped surfaces of platinum , 1972 .

[31]  Hakim Meskine,et al.  Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions? , 2007, The Journal of chemical physics.

[32]  H. Knözinger,et al.  Zur Dehydratisierung von Alkoholen an Aluminiumoxid. V. Mitt. über Kinetik und Mechanismus der Äther‐Bildung aus Methanol , 1967 .

[33]  H. Taylor A Theory of the Catalytic Surface , 1925 .

[34]  Concepts in theoretical heterogeneous ultrananocatalysis , 2014 .

[35]  Thomas Bligaard,et al.  The nature of the active site in heterogeneous metal catalysis. , 2008, Chemical Society reviews.

[36]  D. Vlachos,et al.  Site-Dependent Lewis Acidity of γ-Al2O3 and Its Impact on Ethanol Dehydration and Etherification , 2014 .

[37]  D. Vlachos,et al.  Density Functional Theory-Computed Mechanisms of Ethylene and Diethyl Ether Formation from Ethanol on γ-Al2O3(100) , 2013 .

[38]  H. Taylor The adsorption of gases by solids. A general discussion. General introduction , 1932 .

[39]  Catalytic Paradigms: A Riddle and a Puzzle , 2014 .

[40]  G. Marin,et al.  DFT-based modeling of benzene hydrogenation on Pt at industrially relevant coverage , 2015 .

[41]  Marie-Françoise Reyniers,et al.  First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs , 2012 .

[42]  F. Negreiros,et al.  Ligand/cluster/support catalytic complexes in heterogeneous ultrananocatalysis: NO oxidation on Ag3/MgO(100). , 2014, Physical chemistry chemical physics : PCCP.

[43]  F. Zaera The surface chemistry of heterogeneous catalysis: mechanisms, selectivity, and active sites. , 2005, Chemical record.

[44]  Matteo Maestri,et al.  Molecular-level understanding of WGS and reverse WGS reactions on Rh through hierarchical multiscale approach , 2012 .

[45]  B. Rebours,et al.  Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina , 2001 .

[46]  H. Knözinger,et al.  The dehydration of alcohols over aluminaI. The reaction scheme , 1966 .

[47]  A. Bhan,et al.  Kinetics and Mechanism of Alcohol Dehydration on γ-Al2O3: Effects of Carbon Chain Length and Substitution , 2015 .

[48]  H. Knözinger,et al.  Über das Adsorptionsverhalten von Aluminiumoxid , 1968 .

[49]  A. Bhan,et al.  Kinetics and site requirements of ether disproportionation on γ-Al2O3 , 2015 .

[50]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[51]  V. Nero,et al.  Identification of alcohol adsorption sites on [gamma]-alumina , 1992 .

[52]  A. Bhan,et al.  Kinetics and Mechanism of Ethanol Dehydration on γ-Al2O3: The Critical Role of Dimer Inhibition , 2013 .

[53]  Philippe Sautet,et al.  Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces , 2004 .

[54]  R. Gilbert,et al.  The application of transition state theory to gas-surface reactions III. Lattice gas systems with adsorbate interactions , 1995 .

[55]  Philippe Sautet,et al.  Computational methods in catalysis and materials science , 2009 .

[56]  Pascal Raybaud,et al.  Understanding and predicting improved sulfide catalysts: Insights from first principles modeling , 2007 .

[57]  H. Knözinger,et al.  Kinetics of the bimolecular ether formation from alcohols over alumina , 1973 .

[58]  H. Knözinger,et al.  The dehydration of alcohols on alumina: XII. Kinetic isotope effects in the olefin formation from butanols , 1970 .

[59]  B. Davis,et al.  Catalytic Dehydration of Alcohols. Kinetic Isotope Effect for the Dehydration of t-Butanol , 2002 .

[60]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[61]  H. Knözinger,et al.  Mechanismus und Substituenteneffekt bei Dehydratisierung von Alkoholen an Aluminiumoxid 1,2 , 1969 .

[62]  Donghai Mei,et al.  (100) facets of γ-Al2O3: The Active Surfaces for Alcohol Dehydration Reactions , 2011 .

[63]  A. Jansen,et al.  Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling. , 2013, The Journal of chemical physics.

[64]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[65]  D. Vlachos,et al.  DFT-driven multi-site microkinetic modeling of ethanol conversion to ethylene and diethyl ether on γ-Al 2 O 3 (1 1 1) , 2015 .

[66]  Ju Li,et al.  Adsorbate interactions on surface lead to a flattened Sabatier volcano plot in reduction of oxygen , 2012 .

[67]  Philippe Sautet,et al.  γ-Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of "defect" sites. , 2012, Journal of the American Chemical Society.

[68]  B. Delmon,et al.  Acid-base properties of silica-aluminas : use of 1-butanol dehydration as a test reaction , 1991 .

[69]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.