Control of decoherence: Dynamical decoupling versus quantum Zeno effect: A case study for trapped ions

The control of thermal decoherence via dynamical decoupling and via the quantum Zeno effect (Zeno control) is investigated for a model of trapped ion, where the dynamics of two low-lying hyperfine states undergoes decoherence due to the thermal interaction with an excited state. Dynamical decoupling is a procedure that consists in periodically driving the excited state, while the Zeno control consists in frequently measuring it. When the control frequency is high enough, decoherence is shown to be suppressed. Otherwise, both controls may accelerate decoherence. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004

[1]  S. A. Gurvitz,et al.  Influence of measurement on the lifetime and the linewidth of unstable systems , 2000 .

[2]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[3]  J. Paz,et al.  Decoherence, chaos, the quantum and the classical , 1995 .

[4]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[5]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[6]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[7]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[8]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[9]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[10]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[11]  Gary L. Miller,et al.  Proceedings of the twenty-eighth annual ACM symposium on Theory of computing , 1996, STOC 1996.

[12]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[13]  R. Wilcox Exponential Operators and Parameter Differentiation in Quantum Physics , 1967 .

[14]  A. Lane,et al.  Decay at early times: Larger or smaller than the golden rule? , 1983 .

[15]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[16]  Asher Peres,et al.  Zeno paradox in quantum theory , 1980 .

[17]  Daniel A. Lidar,et al.  Empirical determination of dynamical decoupling operations , 2003 .

[18]  DUALITY IN PERTURBATION THEORY AND THE QUANTUM ADIABATIC APPROXIMATION , 1998, hep-th/9801069.

[19]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[20]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[21]  G. Kurizki,et al.  Acceleration of quantum decay processes by frequent observations , 2000, Nature.

[22]  E.C.G. Sudarshan,et al.  Quantum Zeno dynamics , 2000 .

[23]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[24]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[25]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[27]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  I. Prigogine,et al.  Quantum zeno effect , 1990 .

[30]  A. Sudbery The observation of decay , 1984 .

[31]  S. Nakajima,et al.  On Quantum Theory of Transport Phenomena , 1959 .

[32]  Richard J. Cook What are Quantum Jumps , 1988 .

[33]  P. Résibois,et al.  On the kinetics of the approach to equilibrium , 1961 .

[34]  Quantum Zeno subspaces and dynamical superselection rules , 2002, quant-ph/0207030.

[35]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[36]  K. Stetson,et al.  Progress in optics , 1980, IEEE Journal of Quantum Electronics.

[37]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[38]  Dipankar Home,et al.  A Conceptual Analysis of Quantum Zeno; Paradox, Measurement, and Experiment , 1997 .

[39]  Lloyd,et al.  Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.

[40]  E. B. Davies Quantum theory of open systems , 1976 .

[41]  J. Schwinger THE ALGEBRA OF MICROSCOPIC MEASUREMENT. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[42]  L. Hove The approach to equilibrium in quantum statistics: A perturbation treatment to general order , 1957 .

[43]  Stochastic limit approximation for rapidly decaying systems , 2000, quant-ph/0007007.

[44]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[45]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[46]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[47]  Daniel A. Lidar,et al.  Bang–Bang Operations from a Geometric Perspective , 2001, Quantum Inf. Process..

[48]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[49]  K. R. Parthasarathy,et al.  Mathematical Foundation of Quantum Mechanics , 2005 .

[50]  P. Facchi,et al.  Quantum Zeno subspaces. , 2002, Physical review letters.

[51]  P. Facchi,et al.  From the quantum zeno to the inverse quantum zeno effect. , 2000, Physical review letters.

[52]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[53]  Measuring processes in quantum mechanics I. Continuous observation and the watchdog effect , 1981 .

[54]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[55]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[56]  L. Horwitz,et al.  Numerical study of zeno and anti-zeno effects in a local potential model , 1989 .