Performance Assessment for Preference-Based Evolutionary Multi-Objective Optimization Using Reference Points

How to quantitatively compare the performance of different algorithms is one of the most important issues in multi-objective optimization. There are a number of metrics for evaluating the performance of a multi-objective optimizer that approximates the whole efficient front. However, for evaluating the quality of a preferred subset of the efficient front, the existing metrics are inadequate. In this paper, we suggest a systematic way to adapt the existing metrics to quantitatively evaluate the performance of a preference-based evolutionary multi-objective optimization algorithm using reference points. Its basic idea is to pre-process the preferred efficient set according to a multi-criterion decision-making approach before performance assessment. Extensive experiments conducted on several artificial scenarios and benchmark problems fully demonstrate its working principle, importance and effectiveness in evaluating the quality of different preferred efficient sets with regard to various reference points supplied by a decision maker. Index Terms User-preference, evolutionary multi-objective optimization, performance metric, reference point.

[1]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[2]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[3]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[4]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[5]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[6]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[7]  David A. Van Veldhuizen,et al.  Evolutionary Computation and Convergence to a Pareto Front , 1998 .

[8]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[9]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[10]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[11]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[12]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[15]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[16]  A. Farhang-Mehr,et al.  An Information-Theoretic Entropy Metric for Assessing Multi-Objective Optimization Solution Set Quality , 2003 .

[17]  E. F. Khor,et al.  An Evolutionary Algorithm with Advanced Goal and Priority Specification for Multi-objective Optimization , 2011, J. Artif. Intell. Res..

[18]  Kalyanmoy Deb,et al.  Multi-objective evolutionary algorithms: introducing bias among Pareto-optimal solutions , 2003 .

[19]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[20]  Tong Heng Lee,et al.  Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons , 2004, Artificial Intelligence Review.

[21]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[22]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[23]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[24]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[25]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[26]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[27]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[28]  Mariano Luque,et al.  Equivalent Information for Multiobjective Interactive Procedures , 2007, Manag. Sci..

[29]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[30]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[31]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[32]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[33]  Xiaodong Li,et al.  Designing airfoils using a reference point based evolutionary many-objective particle swarm optimization algorithm , 2010, IEEE Congress on Evolutionary Computation.

[34]  Heike Trautmann,et al.  A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms , 2011, EMO.

[35]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[36]  Lucas Bradstreet,et al.  A Fast Way of Calculating Exact Hypervolumes , 2012, IEEE Transactions on Evolutionary Computation.

[37]  Heike Trautmann,et al.  Preference Articulation by Means of the R2 Indicator , 2013, EMO.

[38]  Xiaodong Li,et al.  A new performance metric for user-preference based multi-objective evolutionary algorithms , 2013, 2013 IEEE Congress on Evolutionary Computation.

[39]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[40]  Qingfu Zhang,et al.  Stable Matching-Based Selection in Evolutionary Multiobjective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[41]  Kalyanmoy Deb,et al.  R-HV: A Metric for Computing Hyper-volume for Reference Point Based EMOs , 2014, SEMCCO.

[42]  Günter Rudolph,et al.  A Multiobjective Evolutionary Algorithm Guided by Averaged Hausdorff Distance to Aspiration Sets , 2014 .

[43]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[44]  Qingfu Zhang,et al.  An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition , 2015, IEEE Transactions on Evolutionary Computation.