A Parametric Distance Function Approach for Malmquist Productivity Index Estimation

Malmquistindexes of productivity are generally estimated using index numbertechniques or non-parametric frontier approaches. The aim ofthis paper is to show that Malmquist indexes can be estimatedin a similar way using parametric-deterministic or parametric-stochasticfrontier approaches. To allow a multi-output multi-input technologyand for technical change in production, we adopt an output distancefunction which is specified in a translog form. We then showthat using the estimated parameters, several radial distancefunctions can be calculated and combined in order to estimateand decompose the productivity index. Finally, this approachis applied to a panel of Spanish insurance companies. The mainresults confirm those generally obtained for financial services:very low rates of growth and technical change in spite of a rapidderegulation process and expansion of activity.

[1]  R. Shepherd Theory of cost and production functions , 1970 .

[2]  Badi H. Baltagi,et al.  A General Index of Technical Change , 1988, Journal of Political Economy.

[3]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[4]  Sergio Perelman,et al.  A comparison of parametric and non-parametric distance functions: With application to European railways , 1999, Eur. J. Oper. Res..

[5]  J. Drèze,et al.  Specification and estimation of Cobb-Douglas production function models , 1966 .

[6]  C. Lovell,et al.  A note on the Malmquist productivity index , 1995 .

[7]  W. Horrace,et al.  Generalized Moments Estimation of a Spatially Correlated Panel Data Model , 1999 .

[8]  C. Lovell,et al.  RESOURCES AND FUNCTIONINGS: A NEW VIEW OF INEQUALITY IN AUSTRALIA , 1994 .

[9]  P. Pestieau,et al.  Productive performance of the French insurance industry , 1993 .

[10]  Mieko Nishimizu Total factor productivity growth, technological progress and technical efficiency change : dimensions of productivity change in Yugoslavia, 1965-1978 , 1982 .

[11]  P. Schmidt,et al.  Confidence statements for efficiency estimates from stochastic frontier models , 1996 .

[12]  Measures of the Insurance Sector Output , 1991 .

[13]  G. Battese,et al.  Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data , 1988 .

[14]  Timothy Coelli,et al.  An Introduction to Efficiency and Productivity Analysis , 1997 .

[15]  R. Färe,et al.  Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries , 1994 .

[16]  R. Solow TECHNICAL CHANGE AND THE AGGREGATE PRODUCTION FUNCTION , 1957 .

[17]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[18]  C. Lovell,et al.  On the estimation of technical inefficiency in the stochastic frontier production function model , 1982 .

[19]  Sergio Perelman,et al.  A parametric distance function approach for Malmquist index estimation , 1998 .

[20]  R. Färe,et al.  Biased Technical Change and the Malmquist Productivity Index , 1995 .

[21]  S. Ray,et al.  PRODUCTIVITY GROWTH, TECHNICAL PROGRESS AND EFFICIENCY CHANGE IN INDUSTRIALIZED COUNTRIES: COMMENT , 1997 .

[22]  Rolf Färe,et al.  Chapter 10 Profitability and productivity changes: An application to Swedish pharmacies , 1996, Ann. Oper. Res..

[23]  Hans Bjurek,et al.  Essays on efficiency and productivity change with applications to public service production , 1994 .

[24]  Shawna Grosskopf,et al.  Budget-Constrained Frontier Measures of Fiscal Equality and Efficiency in Schooling , 1997, Review of Economics and Statistics.

[25]  Rolf Färe,et al.  Productivity growth, technical progress, and efficiency , 1997 .

[26]  C. Lovell,et al.  A generalized Malmquist productivity index , 1999 .

[27]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[28]  D. Primont,et al.  Multi-Output Production and Duality: Theory and Applications , 1994 .

[29]  R. Färe,et al.  Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach , 1994 .

[30]  Timothy Coelli,et al.  On the econometric estimation of the distance function representation of a production technology , 2000 .

[31]  C. A. Knox Lovell,et al.  Applying efficiency measurement techniques to the measurement of productivity change , 1996 .

[32]  B. Balk Scale Efficiency and Productivity Change , 2001 .

[33]  C. A. Knox Lovell,et al.  A DEA-based analysis of productivity change and intertemporal managerial performance , 1997, Ann. Oper. Res..

[34]  S. Malmquist Index numbers and indifference surfaces , 1953 .

[35]  C. O'Brien Measuring the Output of Life Assurance Companies , 1991 .